1
استادیار، گروه مهندسی احیای مناطق خشک و کوهستانی، دانشکدۀ منابع طبیعی، دانشگاه تهران، ایران
2
دانشجوی دکتری، گروه مهندسی احیای مناطق خشک و کوهستانی، دانشکدۀ منابع طبیعی، دانشگاه تهران، ایران
10.22059/jhsci.2025.387276.859
چکیده
در این پژوهش عملکرد فرامدل هیبریدی سهگانۀ RBF- GA- SAARIMA برای پیشبینی فراوانی روزهای همراه با توفان گردوغبار در استان سیستان و بلوچستان در طول دورۀ آماری 50ساله (2020- 1971) بررسی شد. در گام بعدی، نتایج مدلسازی با این فرامدل هیبریدی سهگانه با استفاده از شاخصهای نیکویی برازش، با مدلهای انفرادی SARIMA و RBF و مدلهای هیبریدی دوگانۀ SARIMA- GA، RBF- GA و RBF- SARIMA مقایسه شد. همۀ مدلهای بیانشده در هر پنج ایستگاه، در ترکیب فصلی چهارم حداکثر دقت و عملکرد خود را نشان دادند. با بهکارگیری یک و دو فصل قبل بهجای فصول قدیمیتر، کاهش دقت و افزایش خطای نسبی در پیشبینی شاخص FDSD در استان سیستان و بلوچستان، به چشم میخورد. بهعبارت دیگر، ترسیب ذرات شن و گردوغبار از فصلهای پیشین و سپس انتقال آنها با استفاده از اهرمی قدرتمند مانند باد، سبب رخداد این توفانها در فصلهای آتی میشود. از میان مدلهای بررسیشده، فرامدل هیبریدی سهگانۀ پیشنهادی با بیشترین دقت و کارایی، بهترین روش بهمنظور پیشبینی شاخص فراوانی روزهای همراه با توفان گردوغبار انتخاب شد. مدل هیبریدی دوگانۀ RBF- SARIMA نیز با کمترین مقدار R و بیشترین RMSE، کمترین بازدهی را در پیشبینی این شاخص داشت. میتوان نتیجه گرفت که تلفیق مدلهای انفرادی لزوماً بهمعنای افزایش دقت در مدلسازی متغیرهای اقلیمی نیست
Ahmadpour, A., Mirhashemi, S., Haghighat jou, P., & Foroughi, F. (2022). Comparison of the monthly streamflow forecasting in Maroon dam using HEC-HMS and SARIMA models. Sustainable Water Resources Management, 8(5), 158. [In persian]
Aliyari, M., Teshnehlab, M., & Khaki Sedigh, A. (2008). Short-term forecast of air pollution by neural networks, delayed memory line, gamma and ANFIS with PSO-based educational methods. Control journal, 2(1), 1-19. [In persian]
Alshammari, R. K., Alrwais, O., & Aksoy, M. S. (2022). Machine learning applications to dust storms: a meta-analysis. Aerosol and Air Quality Research, 22(12), 220183.
Al-Taei, A. I., Alesheikh, A. A., & Darvishi Boloorani, A. (2024). Hazardous Dust Source Susceptibility Mapping in Wet and Dry Periods of the Tigris-Euphrates Basin: A Meta-Heuristics and Machine Learning. Environmental Management Hazards, 10(4), 355-370.
Ansari Ghojghar, M., Bazrafshan, J., Araghinejad, S., Parsi, E., & Soltani, S. (2020). Evaluation of the performance of the support-wavelet vector machine hybrid model in predicting dust storms (Case study: Sistan and Baluchestan province). Environmental Management Hazards, 7(4), 331-351. [In persian]
Aryal, Y. (2022). Application of Artificial Intelligence Models for Aeolian Dust Prediction at Different Temporal Scales: A Case with Limited Climatic Data. AI, 3(3), 707-718. https://doi.org/10.3390/ai3030041.
Asghari Sareskanrood, S., & Zeinali, B. (2014). Analyzing and Mapping of Dust Storms Seasonal Frequency over Iran for Hazards Reduction. Environmental Management Hazards, 1(2), 217-239. doi: 10.22059/jhsci.2014.53122. [In persian]
Boloorani, A. D., Ranjbareslamloo, S., Mirzaie, S., Bahrami, H. A., Mirzapour, F., & Tehrani, N. A. (2020). Spectral behavior of Persian oak under compound stress of water deficit and dust storm. International journal of Applied earth Observation and Geoinformation, 88, 102082. [In persian]
Bullard, J. E., Harrison, S. P., Baddock, M. C., Drake, N., Gill, T. E., McTainsh, G., & Sun, Y. (2011). Preferential dust sources: A geomorphological classification designed for use in global dust‐cycle models. Journal of Geophysical Research: Earth Surface, 116(F4).
Dong, Z., Yu, X., Li, X., & Dai, J. (2013). Analysis of variation trends and causes of aerosol optical depth in Shaanxi Province using MODIS data. Chinese Science Bulletin, 58, 4486-4496.
Falah Qalhar, G. & Sarvestan, R. (2020). Review and forecast of the phenomenon of dust in Khuzestan Province using Box-Jenkins time series model. Watershed Engineering and Management, 12(3), 608-620. doi: 10.22092/ijwmse.2018.115726.1363.
Gholami, H., Mohamadifar, A., Sorooshian, A., & Jansen, J. D. (2020). Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmospheric pollution research, 11(8), 1303-1315. [In persian]
Hallaj, Z., Sediqi, H., & Farhadian, H. (2015). Environmental effects of dust storms in southeast Iran (case study: Hamoon Lagoon). In International Conference on New Researches in Agricultural and Environmental Sciences, Tehran, Economy and Energy Association. [In Persian].
jahanbakhshasl S, mohammadkhorshiddoust A, abbsighasrik F, abbasighasrik Z. (2024). Precipitation, Time Series Models, Man-Kendall, Holt Winters model, West Azerbaijan Province. jgs. 24(75), 98-115. doi:61186/jgs.24.75.10. [In persian]
Jish Prakash, P., Stenchikov, G., Kalenderski, S., Osipov, S., & Bangalath, H. (2015). The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmospheric Chemistry and Physics, 15(1), 199-222.
Khaniabadi, Y. O., Daryanoosh, S. M., Amrane, A., Polosa, R., Hopke, P. K., Goudarzi, G., ... & Armin, H. (2017). Impact of Middle Eastern Dust storms on human health. Atmospheric pollution research, 8(4), 606-613. [In persian]
Liu, Y., Wang, G., Hu, Z., Shi, P., Lyu, Y., Zhang, G., ... & Liu, L. (2020). Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China. Atmospheric research, 243, 105031.
Melody Farahbakhsh , Bohlool Alijani, Ebrahim Fattahi, (2015). Synoptic analysis of Iran dust storm hazard (July 30 to August 2, 2012), Journal of Environmental Management Hazard, 2(1), 5-20. magiran.com/p2119723. [In persian]
Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural computation, 1(2), 281-294.
Naghibi, A., Hashemi, H., Zhao, P., Brogaard, S., Eklund, L., Hassan, H. H., & Mansourian, A. (2024). Spatiotemporal variability of dust storm source susceptibility during wet and dry periods: The Tigris-Euphrates River Basin. Atmospheric pollution research, 15(1), 101953.
Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., & Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric environment, 173, 265-276. [In persian]
Neelamani, S., & Al-Dousari, A. (2016). A study on the annual fallout of the dust and the associated elements into the Kuwait Bay, Kuwait. Arabian Journal of Geosciences, 9, 1-11.
O’Loingsigh, T., McTainsh, G. H., Tews, E. K., Strong, C. L., Leys, J. F., Shinkfield, P., & Tapper, N. J. (2014). The Dust Storm Index (DSI): a method for monitoring broadscale wind erosion using meteorological records. Aeolian Research, 12, 29-40.
Pan, H., Gui, G., Lin, Z., & Yan, C. (2018). Deep BBN learning for health assessment toward decision-making on structures under uncertainties. KSCE Journal of Civil Engineering, 22, 928-940.
Pourgholam Amiji, M., Ansari Ghojghar, M., Bazrafshan, J., Liaghat, A., & Araghinejad, S. (2020). Comparing the Performance of SARIMA and Holt-Winters Time Series Models With Artificial Intelligence Methods in Dust Storms Forecasting (Case Study: Sistan and Baluchestan Province). Physical Geography Research Quarterly, 52(4), 567-587. [In persian]
Raeispour, K. (2008). Statistical Analysis and Isometropia of Dust in Khuzestan Province. MS. c dissertation, Sistan and Baluchestan University, 189. [In persian]
Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., de W. Rautenbach, C. J., Flamant, C., & Abdi Vishkaee, F. (2014). Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Natural hazards, 71, 563-585. [In persian]
Rezazadeh, M., Irannejad, P., & Shao, Y. (2013). Climatology of the Middle East dust events. Aeolian Research, 10, 103-109. [In persian]
Rivas, V. M., Merelo, J. J., Castillo, P. A., Arenas, M. G., & Castellano, J. G. (2004). Evolving RBF neural networks for time-series forecasting with EvRBF. Information Sciences, 165(3-4), 207-220.
Samadi, M., Darvishi Boloorani, A., Alavipanah, S. K., Mohamadi, H., & Najafi, M. S. (2014). Global dust Detection Index (GDDI); a new remotely sensed methodology for dust storms detection. Journal of environmental health science and engineering, 12, 1-14. [In persian]
Satapathy, S. K., Dehuri, S., Jagadev, A. K., & Mishra, S. (2019). EEG Signal Classification Using RBF Neural Network Trained With Improved PSO Algorithm for Epilepsy Identification. EEG Brain Signal Classification for Epileptic Seizure Disorder Detection; Satapathy, SK, Dehuri, S., Jagadev, AK, Mishra, S., Eds, 67-89.
Shepherd, G., Terradellas, E., Baklanov, A., Kang, U., Sprigg, W., Nickovic, S., ... & Joowan, C. (2016). Global assessment of sand and dust storms.
Sun, J. H., Zhao, L. N., & Zhao, S. X. (2003). An integrated modeling system of dust storm suitable to north China and applications. Clim Environ Res, 8, 125-142.
Ukhov, A., Mostamandi, S., Da Silva, A., Flemming, J., Alshehri, Y., Shevchenko, I., & Stenchikov, G. (2020). Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmospheric Chemistry and Physics Discussions, 2020, 1-42.
UNEP, WMO, UNCCD, 2016. Global Assessment of Sand and Dust Storms. United Nations Environment Programme, Nairobi.
Wan, A., Chang, Q., Khalil, A. B., & He, J. (2023). Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism. Energy, 282, 128274.
(1995). Manual on Codes – International Codes. WMO Report No.306, Geneva, Switzerland
World Bank. (2019). Sand and Dust Storms in the Middle East and North Africa Region: Sources, Costs, and Solutions.