]1[ جانعلیپور، میلاد؛ عباسزاده طهرانی، نادیا؛ محمدخانلو، حکمتالله؛ خصالی، الهه؛ و عنایتی، حمید. (1398). «شناسایی سریع مناطق آسیبدیده پس از وقوع زلزله با استفاده از تصاویر ماهوارهای Sentinel-2 (مطالعۀ موردی: زلزلۀ سرپل ذهاب)»، مدیریت مخاطرات محیطی، دوره 6، شمارۀ 2، ص 148-131.
]2[ جدی، علی؛ مقیمی، ابراهیم؛ احمدی، سیدعباس؛ و زارع، مهدی (1398). «راهبرد کاهش مخاطرات طبیعی در ایران برمبنای حقوق و روابط بینالملل»، مدیریت مخاطرات محیطی، دورۀ 6، شماره 1، ص 16-1.
]3[ شاهحیدریپور، علی؛ پهلوانی، پرهام؛ و بیگدلی، بهناز. (1397). «تهیۀ نقشۀ ریسک وقوع آتشسوزی مناطق جنگلی با استفاده از روش رگرسیون انطباقی چندمتغیرۀ اسپیلاین (مطالعۀ موردی: استان گلستان)»، مدیریت مخاطرات محیطی، دورۀ 5، شمارۀ 3، ص 277-256
[4] Abbasszadeh Tehrani, Nadia; & Janalipour, Milad. (2020). “Predicting ecosystem shift in a Salt Lake by using remote sensing indicators and spatial statistics methods (case study: Lake Urmia basin)”, Environmental Engineering Research, no. 26 (4):30-40.
[5] Abbaszadeh Tehrani, Nadia; Shafri, Helmi Zulhaidi Mohd; Salehi, Sara; Chanussot, Jocelyn; & Janalipour, Milad (2021). “Remotely-Sensed Ecosystem Health Assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin”, International Journal of Image and Data Fusion:1-26.
[6] Alkhatib, Ahmad A.A. (2014). “A review on forest fire detection techniques”, International Journal of Distributed Sensor Networks, no. 10 (3).
[7] Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; & Jennings, Sion (2016). “Airborne optical and thermal remote sensing for wildfire detection and monitoring”, Sensors no. 16 (8).
[8] Anggraeni, Ajeng; & Chinsu, Lin. (2011). “Application of SAM and SVM Techniques to Burned Area Detection for Landsat TM Images in Forests of South Sumatra”, Paper read at International Conference on Environmental Science and Technology.
[9] Babaei, Hadiseh; Janalipour, Milad; & Abbaszadeh Tehrani, Nadia. (2019). “A simple, robust, and automatic approach to extract water body from Landsat images (case study: Lake Urmia, Iran)”, Journal of Water and Climate Change.
[10] Ban, Yifang; Zhang, Puzhao; Nascetti, Andrea; Bevington, Alexandre R.; & Wulder, Michael A. (2020). “Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning”, Scientific Reports no. 10 (1):1-15.
[11] Bar, Somnath; Parida, Bikash Ranjan; & Pandey, Arvind Chandra (2020). “Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya”, Remote Sensing Applications: Society and Environment.
[12] Bruzzone, Lorenzo, & Prieto, Diego F. (2000). “Automatic analysis of the difference image for unsupervised change detection”, IEEE Transactions on Geoscience and Remote sensing, no. 38(3):1171-1182.
[13] Calle, A, JL Casanova, & Romo, A. (2006). “Fire detection and monitoring using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) data”, Journal of Geophysical Research: Biogeosciences, no. 111 (G4).
[14] Cervantes, Jair; Farid, Garcia-Lamont; , Lisbeth, Rodriguez-Mazahua; &Asdrubal, Lopez (2020). “A comprehensive survey on support vector machine classification: Applications, challenges and trends”, Neurocomputing, no. 408:189-215.
[15] Chambers, Jeffrey; Gorman, Caralyn; Feng, Yanlei; Torn, Margaret; & Stapp, Jared (2019). “Rapid remote sensing assessment of landscape-scale impacts from the California Camp Fire”,
[16] Chu, Thuan; & Guo, Xulin (2014). “Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review”, Remote Sensing, no. 6 (1):470-520.
[17] Chuvieco, Emilio; Aguado, Inmaculada; Salas, Javier; García, Mariano; Yebra, Marta; & Oliva, Patricia (2020). “Satellite remote sensing contributions to wildland fire science and management”, Current Forestry Reports, no. 6 (2):81-96.
[18] Çömert, Resul; MATCI, Dilek Küçük; & Avdan, Uğur (2019). “Object Based Burned Area Mapping with Random Forest Algorithm”, International Journal of Engineering and Geosciences, no. 4 (2):78-87.
[19] de Carvalho, Nathália Silva; Ferreira, Igor José M; Korting, T.S.; Eduardo, L.; Aragao, C.D.; & Anderson, L.O. (2018). “Random forest and support vector machine applied for mapping burned areas in Amazon. Paper read at Proceedings of XIX Brazilian Symposium on Remote Sensing”.
[20] Eisavi, Vahid; & Homayouni, Saeid (2016). “Performance evaluation of random forest and support vector regressions in natural hazard change detection”, Journal of Applied Remote Sensing, no. 10 (4):046030.
[21] Ghavami, Zinat; Arefi, Hossein; Bigdeli, Behnaz; & Janalipour, Milad (2017). “Comprehensive investigation on non-parametric classification methods in order to separate urban objects using the integration of very high spatial resolution LiDAR and aerial data”.
[22] Gigović, Ljubomir; Pourghasemi, Hamid Reza; Drobnjak, Siniša & Bai, Shibiao. (2019). “Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park”, Forests, no. 10 (5):408.
[23] Hussain, Masroor; Chen, Dongmei; Cheng, Angela; Wei, Hui; & Stanley, David (2013). “Change detection from remotely sensed images: From pixel-based to object-based approaches”, ISPRS Journal of Photogrammetry and Remote Sensing, no. 80:91-106.
[24] Jaafari, Abolfazl; & Pourghasemi, Hamid Reza (2019). “Factors influencing regional-scale wildfire probability in Iran: an application of random forest and support vector machine”, In Spatial modeling in GIS and R for Earth and environmental sciences, 607-619. Elsevier.
[25] Jianya, Gong, Haigang, Sui; Guorui, Ma; & Qiming. Zhou (2008). “A review of multi-temporal remote sensing data change detection algorithms”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, no. 37 (B7):757-762.
[26] Joachims, Thorsten (1999). “Svmlight: Support vector machine”, SVM-Light Support Vector Machine http://svmlight. joachims. org/, University of Dortmund, no. 19 (4).
[27] Khanbani, Sara, Mohammadzadeh, Ali; & Janalipourm Milad (2020). “A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm”, Applied Geomatics:1-17.
[28] Khanbani, Sara; Mohammadzadeh, Ali; & Janalipour, Milad (2020). “Unsupervised change detection of remotely sensed images from rural areas based on using the hybrid of improved Thresholding techniques and particle swarm optimization”, Earth Science Informatics:1-14.
[29] Lafarge, Florent; Descombes, Xavier; & Zerubia, Josiane (2005). “Textural kernel for SVM classification in remote sensing: Application to forest fire detection and urban area extraction”, Paper read at IEEE International Conference on Image Processing 2005.
[30] Liu, Sicong; Zheng, Yongjie; Dalponte, Michele; & Tong, Xiaohua (2020). “A novel fire index-based burned area change detection approach using Landsat-8 OLI data”, European journal of remote sensing, no. 53 (1):104-112.
[31] Lu, Dengsheng; Mausel, Paul; Brondizio, Eduardo; & Moran, Emilio (2004). “Change detection techniques”, International journal of remote sensing, no. 25 (12):2365-2401.
[32] Petropoulos, George P.; Charalambos, Kontoes; & Iphigenia, Keramitsoglou; (2011). “Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines”, International Journal of Applied Earth Observation and Geoinformation, no. 13 (1):70-80.
[33] Prakash, Anupma (2000). “Thermal remote sensing: concepts, issues and applications”, International Archives of Photogrammetry and Remote Sensing, no. 33 (B1; PART 1):239-243.
[34] Richards, John Alan; & Richards, J.A. (1999). Remote sensing digital image analysis. Vol. 3: Springer.
[35] Sabat-Tomala, Anita; Raczko, Edwin; & Zagajewski, Bogdan (2020). “Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data”, Remote Sensing, no. 12 (3):516.
[36] Schroeder, Wilfrid; Oliva, Patricia; Giglio, Louis; Quayle, Brad; Lorenz, Eckehard; & Morelli, Fabiano (2016). “Active fire detection using Landsat-8/OLI data”, “Remote sensing of environment”, no. 185:210-220.
[37] Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; & Haack, Barry. (2010). “Visible and infrared remote imaging of hazardous waste: a review”, Remote Sensing, no. 2 (11):2474-2508.
[38] Syifa, Mutiara; Panahi, Mahdi; & Lee, Chang-Wook. (2020). “Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA”, Remote Sensing, no. 12 (4).
[39] Wooster, Martin J.; Roberts, Gareth; Alistair MS Smith; Johnston, Joshua; Freeborn, Patrick; Amici, Stefania; & Hudak; Andrew T. (2013). “Thermal remote sensing of active vegetation fires and biomass burning events”, In Thermal Infrared Remote Sensing, 347-390, Springer.