Faculty of Architecture, College of Fine Arts, University of Tehran, Iran
10.22059/jhsci.2025.394340.878
Abstract
System health management and its sub-discipline, building health monitoring, are efficient engineering concepts that focus on monitoring and evaluating structural systems to optimize their behavior in both normal conditions and environmental hazard events. Monitoring the health of structures and infrastructure is a requirement for the management of progressive societies, as life in these societies depends on advanced structural systems that have been in place for a long time since their design. Since it is not economically feasible to replace these systems with new ones, Effective strategies are developed that facilitate the detection of structural weaknesses and then programming to improve them. The structural health monitoring method is one of the most effective approaches in this field. The importance of this engineering approach is especially important for countries that are at risk of actual and potential natural hazards. Therefore, it is important to conduct targeted research to introduce the principles and concepts of this engineering discipline. Method: This research is qualitative, and in conducting it, the causal method has been adopted to survey the relationships and causes between building health management and the quality of its technical performance. Results: The article begins with an analytical discussion of basic concepts and definitions, aiming to establish a common language for disseminating the subject to the country's scientific and engineering discourses. It also discusses the factors that determine the optimal strategy for applying these concepts, explaining the principle that the building health approach is based on the use of developed techniques for comprehensive structural monitoring and assessment of buildings. In other words, building health management is a set of engineering processes and technologies to improve the safety and reliability of building systems. This article also discusses the point that building health engineering is an efficient method for continuous monitoring of structures and infrastructures that allows for early detection of damage and timely repair and replacement of defective components at the lowest cost. Building health engineering is effective in saving money, time, and improving safety. In addition to these aspects, it leads to increased knowledge about the safety status of buildings, which is an effective factor in improving structural standards as well as the safe design of structures in the future. Conclusions: Structural health monitoring is a management method based on technologies and engineering processes to continuously monitor building systems to improve their safety and reliability. This engineering approach focuses on evaluating the health of structural systems to optimize their behavior both under normal conditions and under environmental hazards. This engineering method is interdisciplinary and is the result of the integration of science and technology, so it is essential to hold discussions in which experts in related fields can express their experiences on the latest scientific and technological achievements. The success of experts in this field is in updating their knowledge by knowing the latest scientific findings related to basic and applied issues in this field.
چناقلو، محمدرضا؛ و سلیمانبیگی، ناصر (1381). پایش سلامتی سازهها، اولین کنفرانس ایمنسازی و بهسازی سازهها، تهران، https://civilica.com/doc/581
زارع، مهدی؛ و مقیمی، ابراهیم (1401). گونهشناسی مخاطرات در علم مخاطرهشناسی (آیا علم مخاطرهشناسی گونههای خاصی دارد؟)، مدیریت مخاطرات محیطی، 9(4)، 383-390. doi: 10.22059/jhsci.2023.356665.770
کبیرصابر، محمدباقر (1392). رهیافتهای معماری سنتی تبریز برای ساختوساز ایمن پس از زلزله (مطالعۀ موردی: کاربست کلافهای چوبی در معماری خانههای قاجاری). نامۀ معماری و شهرسازی، 6(11)، 59-70. doi: 10.30480/aup.2013.111
کبیرصابر، محمدباقر (1394). مفهوم شناسی واژۀ «سازه» در گفتمان معماری معاصر ایران، سبکشناسی نظم و نثر فارسی (بهار ادب)، 8(1)، 393-404. https://bahareadab.com/article_id/223
محرمی، رسول؛ بیات، امیرحسین؛ و آقائی، سروش (1394). اصول و کاربرد پایش سلامت سازهها، صوت و ارتعاش، 4(8)، 3-17.
مقیمی، ابراهیم (1401). استراتژی علم مخاطرهشناسی؛ آیا علم مخاطرهشناسی استراتژی دارد؟. مدیریت مخاطرات محیطی، 9(1)، 45-54. doi: 10.22059/jhsci.2022.345598.730
مقیمی، ابراهیم (1403). رویکرد جدید به مخاطرات محیطی و توسعۀ پایدار در ایران، مدیریت مخاطرات محیطی، 11(1)، 73-84. doi: 10.22059/jhsci.2024.378814.830
موسوی، محمد؛ و بخشی، علی (1401). شناسایی ترک در سازههای مصالح بنایی به کمک بینایی کامپیوتر براساس یادگیری عمیق، مجلۀ مهندسی عمران شریف، 38،2(2،1)، 99-108. doi: 10.24200/j30.2022.59496.3055
نقیب هاشمی، سیدسهند؛ اصغری توچائی، سیدامیر؛ و بینش مروستی، محمدرضا (1400). تصمیمگیری منفعلانۀ هوشمند برای حسگرهای بیدارشونده در پایش سازهای، مهندسی برق و مهندسی کامپیوتر ایران، 19(3)، 170-182.
Abdelbarr, M., Chen, Y. L., Jahanshahi, M. R., Masri, S. F., Shen, W. M., & Qidwai, U. A. (2017). 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor. Smart materials and structures, 26(12), 125016. https://doi.org/10.1088/1361-665X/aa9450.
Balageas, D., Fritzen, C. P., & Güemes, A. (Eds.). (2010). Structural health monitoring, John Wiley & Sons.
Çelebi, M. (2019). SHM of Buildings in USA. In: Maria Pina Limongelli, Mehmet Çelebi. Seismic Structural Health Monitoring: From Theory to Successful Applications. Spriger. https://doi.org/10.1007/978-3-030-13976-6.
Chenaghlou, M.R & Soleimanbeigi, N. (2002). Structural health monitoring. 1st conference on seismic retrofitting of structures, Amirkabir University of Technology. Tehran. https://civilica.com/doc/581. (in Persian).
Farrar, C. R., & Worden, K. (2012). Structural health monitoring: a machine learning perspective. John Wiley & Sons.
Farrar, C. R., Doebling, S. W., & Nix, D. A. (2001). Vibration–based structural damage identification. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778), 131-149. https://doi.org/10.1098/rsta.2000.0717.
Farrar, C.R., Dervilis, N. & Worden, K. (2025). The Past, Present and Future of Structural Health Monitoring: An Overview of Three Ages. Strain, 61(1), p.e12495. https://doi.org/10.1111/str.12495.
Ibrahim, R. A. (2017). Handbook of structural life assessment. John Wiley & Sons.
Johnson, B. (2015). System Health Management. In: Larry B. Rainey, Andreas Tolk. Modeling and Simulation Support for System of Systems Engineering Applications. John Wiley and Sons. 131-143.
Kabirsaber, M. B. (2013). Traditional principals for safe construction after earthquake in old Tabriz (wooden coil technique in Qajariieh era residential architecture). Journal of Architecture and Urban Planning, 6(11), 59-70. doi: 10.30480/aup.2013.111 (in Persian).
Kabirsaber, Mohammadbagher., (2015). The consept of “Sazeh” term in discourse of Iranian contemporary architecture. Journal of the Stylistic of Persian Poem and Prose, 8(1), 393-404. https://bahareadab.com/article_id/223. (in Persian).
Mann, A. (2023). Structural safety: theory & practice. Whittles Publishing
Moghimi, E. (2022). Hazards science strategy Does Hazards science have a strategy? Environmental Management Hazards, 9(1), 45-54. doi: 10.22059/jhsci.2022.345598.730 (in Persian).
Moghimi, E. (2024). A new approach to environmental hazards and sustainable development for Iran. Environmental Management Hazards, 11(1), 73-84. doi: 10.22059/jhsci.2024.378814.830 (in Persian).
Moharrami, R., Bayat, AH., Aghaei, S. (2016). Fundamental of Structural Health Monitoring. Iranian Journal of Sounad and Vibration, 8(4), 3-17. (in Persian)
Mousavi, M. & Bakhshi, A. (2022). Crack detection in masonry structures using computer vision based on deep learning. Sharif Journal of Civil Engineering, 38.2(2.1), 99-108. doi: 10.24200/j30.2022.59496.3055 (in Persian).
Naghib hashemi, S., Asghari, S. A., & Binesh Marvasti, M. R. (2022). Autonomous Controlling System for Structural Health Monitoring Wireless Sensor Networks. Nashriyyah-i Muhandisi-i Barq va Muhandisi-i Kampyutar-i Iran, 90(3), 170. (in Persian).
Nowak, A. S., & Collins, K. R. (2012). Reliability of structures. CRC press.
Perelmuter, A., & Slivker, V. (2013). Numerical Structural Analysis: Methods, Models and Pitfalls. Springer Science & Business Media.
Sarja, A. (2002). Integrated life cycle design of structures (142). London: Spon Press.
Zare, M. & Moghimi, E. (2023). Hazards typology in hazards science (Does hazards science have special types?). Environmental Management Hazards, 9(4), 383-390. doi: 10.22059/jhsci.2023.356665.770. (in Persian).
Smarsly, K., Lehner, K., & Hartmann, D. (2007). Structural health monitoring based on artificial intelligence techniques. In Computing in Civil Engineering. 111-118.
Kabirsaber, M. (2025). Cognitive foundations of structural health monitoring
Rereading Capabilities for environmental hazard conditions. Environmental Management Hazards, 12(1), 19-34. doi: 10.22059/jhsci.2025.394340.878
MLA
Kabirsaber, M. . "Cognitive foundations of structural health monitoring
Rereading Capabilities for environmental hazard conditions", Environmental Management Hazards, 12, 1, 2025, 19-34. doi: 10.22059/jhsci.2025.394340.878
HARVARD
Kabirsaber, M. (2025). 'Cognitive foundations of structural health monitoring
Rereading Capabilities for environmental hazard conditions', Environmental Management Hazards, 12(1), pp. 19-34. doi: 10.22059/jhsci.2025.394340.878
CHICAGO
M. Kabirsaber, "Cognitive foundations of structural health monitoring
Rereading Capabilities for environmental hazard conditions," Environmental Management Hazards, 12 1 (2025): 19-34, doi: 10.22059/jhsci.2025.394340.878
VANCOUVER
Kabirsaber, M. Cognitive foundations of structural health monitoring
Rereading Capabilities for environmental hazard conditions. Environmental Management Hazards, 2025; 12(1): 19-34. doi: 10.22059/jhsci.2025.394340.878