Identification and analysis of the temporal-spatial trend of heat waves in Tehran

Document Type : Applied Article

Authors

1 PhD Student at climatology, Physical Geography Department, University of Tehran, P.O. Box 14155-6465, Tehran, Iran

2 Associate Professor, Physical Geography Department, University of Tehran, P.O. Box 14155-6465, Tehran, Iran

3 Full Professor, Physical Geography Department, University of Tehran, P.O. Box 14155-6465, Tehran, Iran

10.22059/jhsci.2025.389996.865

Abstract

Heat waves are one of the most important climate hazards today that devastate major cities worldwide. This study aims to explain the frequency, temporal distribution, continuity, and identification of the trend of their occurrence in Tehran, which was extracted using statistical methods and daily maximum temperature data from Tehran synoptic stations for a 30-year statistical period (1994-2023). First, the nonparametric Mann-Kendall method was used to identify the variability and monthly, seasonal, and annual trends of maximum temperatures. Then, percentile indices (95th and 99th) were used to identify its intensity, duration, and frequency. The study results showed that the frequency of short-term heat waves (two and three days) was higher. The highest frequency was related to the 2-day heat wave, which is more frequent at the geophysical station. The share of waves lasting 7 days or more was associated with a lower frequency. The highest frequency of seasonal events is also in autumn. The highest duration of heat waves was at Chitgar stations with 13 consecutive days in summer; Shemiran with 11 days in winter; Geophysics and Mehrabad with 10 and 9 days in autumn, spring and winter. The highest occurrence of heat waves was in Shemiran with 890 and the lowest in Mehrabad with 775 cases. Analysis of the trend indicates an increasing trend of heat wave occurrence in all seasons of the year. Therefore, it can be concluded that the effect of climate change in the region has led to the weakening of temperate latitude systems and the entry of warm masses from southern latitudes into the region. Its importance is in changing the type of precipitation from solid to liquid, reducing snow storage in highlands and destructive changes in plant phenology and the possibility of frost damage with late frosts for horticultural crops.

Keywords


  • اسدی، اشرف؛ و مسعودیان، ابوالفضل (1393). پهنه‌بندی ایران برپایۀ دماهای فرین بالا، فیزیک زمین و فضا، 40(4)، 155-158. https://doi.org/10.22059/jesphys.2014.52426
  • جهانبخش، سعید؛ قویدل، فاطمه؛ و اشجعی، محمد (1394). شناسایی، طبقه‌بندی و تحلیل همدیدی امواج گرمایی به‌منظور کاهش مخاطرات انسانی در شمال غرب ایران. مدیریت مخاطرات محیطی، 2(4)، 377-391. https://doi.org/10.22059/jhsci.2015.58265
  • حاتمی زرنه، داریوش؛ حجازی‌زاده، زهرا؛ و ناصرزاده، محمدحسین (1398). تحلیل نوسان‌های زمانی امواج گرمایی منطقه‌ی شمال غرب ایران و ارتباط آن‌ها با گازهای گلخانه‌ای و ناهنجاری‌های دمایی کره‌ی زمین، تحقیقات کاربردی علوم جغرافیایی، 19(52)، 35-56. http://dx.doi.org/10.29252/jgs.19.52.35
  • حجام، سهراب؛ خوشخو، یونس؛ و شمس‌الدین‌وندی، رضا (1387). تحلیل روند تغییرات بارندگی‌های فصلی و سالانۀ چند ایستگاه منتخب در حوزه مرکزی ایران با استفاده از روش‌های ناپارامتری، پژوهش‌های جغرافیای طبیعی، 3(63)، 142-151.
  • حسین‌پور، زینب، شمسی‌پور، علی‌اکبر، کریمی، مصطفی و خوش‌اخلاق، فرامرز. (1402). تحلیل آماری امواج گرمایی در دامنه‌های جنوبی البرز، تحقیقات کاربردی علوم جغرافیایی، 23(68)، 81-98. http://dx.doi.org/10.52547/jgs.23.68.81
  • دارند، محمد (1393). شناسایی و تحلیل زمانی - مکانی امواج گرمایی ایران‌زمین، جغرافیا و توسعه، 12(35)، 167-180. https://doi.org/10.22111/gdij.2014.1561
  • دوستان، رضا؛ اعتمادیان، الهه؛ و زرین، آذر (1399). نواحی امواج گرمایی ایران. پژوهش‌های اقلیم‌شناسی، 42، 17-30.
  • زارع، مهدی؛ و مقیمی، ابراهیم (1401). گونه‌شناسی مخاطرات در علم مخاطره‌شناسی (آیا علم مخاطره‌شناسی گونه‌های خاصی دارد؟). مدیریت مخاطرات محیطی. 9(4)، 383-390، http//doi.org/10.22059/jhsci.2023.356665.770
  • شاکری، فهیمه (1395). تحلیل سینوپتیکی موج‌های گرمایی تابستانه در کلانشهر تهران. اولین کنفرانس بین‌المللی مخاطرات طبیعی و بحران‌های زیست‌محیطی ایران، راهکارها و چالش‌ها، اردبیل. https://civilica.com/doc/549021
  • قویدل، یوسف؛ فرج‌زاده، منوچهر؛ و قهرمان، بشیر (1398). کاربرد روش تحلیل مقادیر فرین در اقلیم‌شناسی مخاطرۀ امواج گرمایی نیمۀ جنوبی ایران. تحلیل فضایی مخاطرات محیطی. ۶(۲)،۱-۱۷. https://civilica.com/doc/1285676/
  • مقیمی، ابراهیم (1394). دانش مخاطرات (برای زندگی با کیفیت بهتر و محیط پایدارتر). تهران: انتشارات دانشگاه تهران.
  • Abbasnia, M., Tavousi, T., Khosravi, M., & Toros, H. (2016). Spatial-temporal analysis of heat waves in Iran over the last three decades. Natural Environment Change. 2(1), 25–33. https://doi.org/10.1007/s00704-018-2601-7.
  • Alizadeh-Choobari, O., & Najafi, M. S. (2018). Extreme weather events in Iran under a changing climate. Climate Dynamics. 50(1), 249–260. https://link.springer.com/article/10.1007/s00382-017-3602-4
  • Bumbaco, K. A., Dello, K. D., & Bond, N. A. (2013). History of Pacific Northwest heat waves: Synoptic pattern and trends. Journal of Applied Meteorology and Climatology. 52(7), 1618–1631. https://doi.org/10.1175/JAMC-D-12-094.1
  • De Bont, J., Nori-Sarma, A., Stafoggia, M., Banerjee, T., Ingole, V., Jaganathan, S., ... & Ljungman, P. (2024). Impact of heatwaves on all-cause mortality in India: A comprehensive multi-city study. Environment International, 184, 108461. https://doi.org/10.1016/j.envint.2024.108461
  • Famooss Paolini, L., Ruggieri, P., Pascale, S., Brattich, E., & Di Sabatino, S. (2024). Hybrid statistical–dynamical seasonal prediction of summer extreme temperatures in Europe. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4900
  • (2021). Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Jiao, J., Chen, T., Wang, Q., & Zang, X. (2023). Coupling relationship between heat waves and air pollution: A case study of Central Tianjin. In Journal of Physics: Conference Series.2468(1),. 012127. IOP Publishing. https://doi.org/10.1016/j.envpol.2022.120256
  • Joshua, N., Lizundia-Loiola, J., & Pena, J. (2023). Heatwaves characterization derived from reanalysis and climate projections to assess thermal behavior of regions in Europe (1981–2100). https://doi.org/10.5281/zenodo.8031482
  • Liu, L., & Qin, X. (2023). Analysis of heatwaves based on the universal thermal climate index and apparent temperature over mainland Southeast Asia. International Journal of Biometeorology. 67(12), 2055–2068. https://doi.org/10.1007/s00484-023-02562-9
  • McGregor, G. R., Felling, M., Wolf, T., & Gosling, S. (2007). The social impacts of heat waves. Environment Agency. https://doi: 10.1348/000712609X479636
  • Namroodi, M., Hamidianpour, M., & Poodineh, M. (2021). Spatio-temporal analysis of changes in heat and cold waves across Iran over the statistical period 1966–2018. Arabian Journal of Geosciences. 14(10), 857. https://doi.org/10.1007/s12517-021-07161-9
  • Nasiri, B. (2016). The investigation of summer heat waves in Tehran city. Mediterranean Journal of Social Sciences, 7(3), S2. http://dx.doi.org/10.5901/mjss.2016.v7n3s2p216
  • Perkins-Kirkpatrick, S. E., & Lewis, S. C. (2020). Increasing trends in regional heatwaves. Nature Communications, 11(1), 3357. https://www.nature.com/articles/s41467-020-16970-7
  • Rahman, M. M., Mannan, M. A., Sarkar, M. S. K., Mallik, M. A. K., Sultana, A., Islam, M. K., ... & Islam, A. R. M. T. (2024). Are hotspots and frequencies of heat waves changing over time? Exploring causes of heat waves in a tropical country. PLOS ONE, 19(5), e0300070. https://doi.org/10.1371/journal.pone.0300070
  • Ren, Y., Liu, J., Zhang, T., Shalamzari, M. J., Arshad, A., Liu, T., ... & Wang, T. (2023). Identification and analysis of heatwave events considering temporal continuity and spatial dynamics. Remote Sensing, 15(5), 1369. https://doi.org/10.3390/rs15051369
  • Rezaei, M., Aalijahan, M., Lupo, A. R., & Zerafati, H. (2023). Trend analysis of widespread heat days in the Middle East and North Africa region between 1871 and 2012. International Journal of Climatology. 43(16), 8052–8071. http://dx.doi.org/10.1002/joc.8306
  • Shafiei Shiva, J., Chandler, D. G., & Kunkel, K. E. (2019). Localized changes in heat wave properties across the United States. Earth’s Future, 7, 300–319. http://dx.doi.org/10.1029/2018EF001085
  • Shi, P., Li, Y., Biswas, A., Wei, K., & Hou, M. (2024). Spatial-temporal evolution and intrinsic drivers of compound drought and heatwave events in Mainland China. Science of The Total Environment, 948, 174834. http://dx.doi.org/10.1016/j.scitotenv.2024.174834
  • (2024). The health impacts of 2024 summer heat-waves. Briefing note for the delegations of the fifty-third session of the WHO Regional Committee for Europe.
  • Zittis, G., Hadjinicolaou, P., Almazroui, M., Bucchignani, E., Driouech, F., El Rhaz, K., ... & Lelieveld, J. (2021). Business-as-usual will lead to super and ultra-extreme heatwaves in the Middle East and North Africa. npj Climate and Atmospheric Science, 4(1), 20. http://dx.doi.org/10.1038/s41612-021-00178-7