Site Selection Assessment of Azar Abadeghan Khoy Cement Factory in terms of Flood Hazards Using MEREC Model

Document Type : Applied Article

Authors

1 Professor of Geomorphology, University of Tabriz and Iranian Hazardology Association, Iran

2 Postdoctoral Researcher, University of Tabriz, Iran

10.22059/jhsci.2025.398196.886

Abstract

Due to its geographical location at the outlet of an upstream basin and the presence of an extensive network of primary and secondary waterways, the Azar Abadeghan Cement Factory in Khoy is constantly at risk of destructive flooding. The primary objective of this study is to assess the placement of this factory in relation to flood hazard and to propose appropriate strategies for mitigating potential damages. To gain a comprehensive understanding of the flood hazard, a detailed flood hazard map of the study area was developed. In this research, a multi-criteria decision-making (MCDM) model, combined with Geographic Information System (GIS) capabilities, was employed to create a flood hazard zoning map and identify vulnerable areas. The criteria used in this study included elevation, slope, aspect, precipitation, distance to the river, drainage density, vegetation index, land use, lithology, soil hydrological groups, topographic wetness index, sediment transport index, and stream power index. The MEREC method was employed to determine the weights of the criteria. The weighting results revealed that the slope factor, with a weight of 0.137, had the greatest influence on flood occurrence in the region. Following that, lithology (with a weight of 0.131) and precipitation (with a weight of 0.118) ranked second and third, respectively. Based on the analysis of hazard zone areas in the final map, over 16% of the region's area (equivalent to 124 hectares) falls within the high and very high-hazard classes. According to the findings of this study, appropriate preventive and management measures should be implemented to reduce flood hazard around the factory, in order to prevent potential flood-related damages in the future.

Keywords


[1] اسماعیلی علویجه، الهام؛ کریمی، سعید؛ و علوی‌پور، فاطمه‌سادات (1399). ارزیابی آسیب‌پذیری مناطق شهری در برابر سیل با منطق فازی (مطالعۀ موردی: منطقه  22 تهران). علوم و تکنولوژی محیط زیست، 22(3)، 351-361.
[2] رحیمی، امیر؛ و نسترن، مهین (1404). تحلیل آسیب‌پذیری زیرساخت‌های روبنایی در برابر سیل با تأکید بر روشAHP Fuzzy (مورد مطالعه: شهر خرم‌آباد). جغرافیا و مخاطرات محیطی، 14(1): 105-128. doi: 10.22067/geoeh.2025.89239.1506
[3] رضائی‌مقدم، محمدحسین؛ و رحیم‌پور، توحید (1402). تهیۀ نقشۀ پتانسیل خطر وقوع سیل با استفاده از دو روش نسبت فراوانی و شاخص آماری (مطالعۀ موردی: حوضۀ آبریز آجی‌چای). مدیریت مخاطرات محیطی، 10(4)، 291-308. doi: 10.22059/jhsci.2024.369163.803
[4] رضائی‌مقدم، محمدحسین؛ و رحیم‌پور، توحید (1403). ارزیابی پتانسیل خطر وقوع سیلاب با استفاده از روش تحلیل آماری دومتغیره (مطالعۀ موردی: حوضۀ آبریز آجی چای). پژوهش‌های ژئومورفولوژی کمّی، 12(4)، 91-107.doi: 10.22034/gmpj.2024.429929.1473
[5] رضائی‌مقدم، محمدحسین؛ و رحیم‌پور، توحید (1404). کاربرد روش‌ها و فنون تصمیم‌گیری چندمعیاره در مدل‌سازی مخاطرات محیطی. انتشارات دانشگاه تبریز، 210 صفحه.
[6] سراوانی، چنگیز؛ عبدالله زاده، غلامحسین؛ شریف‌زاده، محمد‌شریف؛ و قربانی، خلیل (1400). ارزیابی آسیب‌پذیری خانوارها در مواجهه با خطر سیلاب در نواحی روستایی: مطالعه موردی شهرستان‌های آق‌قلا و گمیشان. تحلیل فضایی مخاطرات محیطی، ۸(۲)، ۱۰۱-۱۱۸.
[7] سنایی‌فرد، ابوالقاسم؛ امیر‌احمدی، ابوالقاسم؛ و زنگنه، یعقوب (1402). کاهش آسیب‌پذیری شریان‌های حیاتی در برابر سیل (مطالعۀ موردی: شهر سبزوار). پژوهش و برنامه‌ریزی شهری، 14(52)، 1-16.
[8] مقیمی، ابراهیم (1403). رویکرد جدید به مخاطرات محیطی و توسعۀ پایدار در ایران. مدیریت مخاطرات محیطی، 11(1)، 73-84. doi: 10.22059/jhsci.2024.378814.830
[9]. Burton, C., Cutter, S. (2008). Levee failures and social vulnerability in the Sacramento-San Joaquin delta area California. Nat Hazard Rev, 9(3):136–149. doi:10.1061/(ASCE)1527-6988(2008)9:3(136)
[10]. Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14: 60-74. doi: https://doi.org/10.1016/j.rsase.2019.02.006
[11]. Diakakis, M., Mavroulis, S., Deligiannakis, G. (2012). Floods in Greece, a statistical and spatial approach. Nat. Hazards, 62: 485–500. https://doi. org/10.1007/s11069-012-0090-z
[12]. Esmaeili Alavijeh, E., Karimi, S., Alavipoor, F. (2020). Vulnerability Assessment in Urban Areas against Flood with Fuzzy Logic (case study: Tehran District 22), Journal of Environmental Science and Technology, 22(3), 351-361. (in Persian)
[13]. Ghosh, S., Saha, S., Bera, B. (2022). Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Natural Hazards Research, 2(4): 363-374. doi: https://doi.org/10.1016/j.nhres.2022.06.003
[14]. Iqbal Shah, A., Das Pan, N.  (2024). Flood susceptibility assessment of Jhelum River Basin: A comparative study of TOPSIS, VIKOR and EDAS methods. Geosystems and Geoenvironment, 3(4): 100304. https://doi.org/10.1016/j.geogeo.2024.100304
[15]. Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E.K., Turskis, Z., Antucheviciene, J. (2021). Determination of ObjectiveWeights Using a New Method Based on the Removal Effects of Criteria (MEREC), Symmetry, 13(525): 1-20.
[16]. Moghimi, E. (2024). A new approach to environmental hazards and sustainable development for Iran. Environmental Management Hazards, 11(1), 73-84. doi: 10.22059/jhsci.2024.378814.830 (in Persian)
[17]. Pangali Sharma, T.P., Zhang, J., Khanal, N.R., Nepal, P. Pangali Sharma, B.P., Nanzad, L., Gautam, Y. (2022). Household Vulnerability to Flood Disasters among Tharu Community, Western Nepal. Sustainability, 14, 12386. https://doi.org/10.3390/ su141912386
[18]. Rahimi, A., Nastaran, M. (2025). Vulnerability analysis of facilities against flood with emphasis on AHP Fuzzy method (case study: Khorramabad city). Journal of Geography and Environmental Hazards, 14(1), 99-122. doi: 10.22067/geoeh.2025.89239.1506 (in Persian)
[19]. Rezaei Moghaddam, M. H., Rahimpour, T. (2024). Evaluating of Flood hazard potential using bivariate statistical analysis method (Case study: Aji Chai basin). Quantitative Geomorphological Research, 12(4), 91-107. doi: 10.22034/gmpj.2024.429929.1473 (in Persian)
[20]. Rezaei Moghaddam, M. H., Rahimpour, T. (2024). Preparation of flood hazard potential map using two methods: Frequency Ratio and Statistical Index (Case study: Aji Chai Basin). Environmental Management Hazards, 10(4), 291-308. doi: 10.22059/jhsci.2024.369163.803 (in Persian)
[21]. Rezaei Moghaddam, M. H., Rahimpour, T. (2024). Application of Multi-Criteria Decision Making Methods in Environmental Hazards Modeling. University of Tabriz, 210 Pages. (in Persian)
[22]. Sam, A.S., Kumar, R., Kächele, H., Müller, K. (2017). Vulnerabilities to flood hazards among rural households in India. Nat Hazards, doi:10.1007/s11069-017-2911-6
[23]. Sanaifard, A., Amirahmadi, A., & Zanganeh, Y. (2023). Reducing the Vulnerability of Vital Arteries to Flood (Case Study: Sabzevar County). Journal of Research and Urban Planning, 14(52), 1-16. doi: 10.30495/jupm.2021.26428.3693 (in Persian)
[24] Seravani C, Abdollahzadeh G, Sharifzadeh M S, Ghorbani K. Vulnerability assessment of households to flood risk in the rural areas: case study of Aqqala and Gomishan Counties. Journal of Spatial Analysis Environmental Hazards 2021, 8(2):101-118 URL: http://jsaeh.khu.ac.ir/article-1-3232-fa.html (in Persian)
[25]. Stefanidis, S., Alexandridis, V., Theodoridou, T. (2022). Flood Exposure of Residential Areas and Infrastructure in Greece. Hydrology, 9, 145.