Statistical Investigation of Emerging Dusts in Ardabil Plain: Climate Effects and Mitigation strategies

Document Type : Applied Article

Authors

1 Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Postdoctoral Researcher in Climatology, Department of Physical Geography, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

10.22059/jhsci.2025.399370.889

Abstract

Objective: This study aims to examine the wind and emerging patterns of dust storms in the Ardabil plain over a 19-year period from 2000 to 2018. It focuses on conducting a statistical analysis, pinpointing local hotspots that contribute to the occurrence of these events, and offering practical solutions to mitigate their impacts.
Methods: This study utilized three-hour wind direction and speed data from the Ardabil synoptic station, along with current condition codes (06, 07, 08, 09, 30, 31, 32, 33, 34, and 35). In combination with the Dust Column Mass Density (DCMD) index, analysis of variance, and LSD tests, the research aimed to assess the influence of the local hotspot on the occurrence and intensification of dust events.
Findings: The analysis reveals that the annual dominant wind direction in the Ardabil plain is easterly, with a frequency of 12%, and an average wind speed of 3.8 m/s when calm conditions are included, rising to 6.3 m/s when calm periods are excluded. The peak wind speed was recorded in January. Trends in dust events indicate a notable increase in frequency over recent years, with the highest occurrences observed in 2011 and 2013, totaling 25 days. The greatest monthly average, 1.2 days, was recorded in March. Based on the dust storm rose, the annual pattern of dust entry into the Ardabil plain varies by season, originating from the southwest throughout the year, shifting to northeast during the warmer months of June through August, dual directions (southwest and northeast) in September, and remaining southwest for the rest of the year.
Conclusion: The findings highlighted the predominance of storms originating locally, as evidenced by the high frequency of code 07 occurrences (239 cases compared to 61 cases for code 06), elevated DCMD values in Ardabil relative to surrounding areas such as Sarein, Sarab, Mianeh, Meshkinshahr, Nir, and Khalkhal, and statistically significant analyses. The Aghbulaghe-Mustafa-Khan region was identified as the critical local epicenter. This area demonstrated a pivotal influence during the warmer months in particular. Proposed measures include managing the local center, establishing both natural and artificial windbreaks, implementing continuous air quality monitoring, and emphasizing the importance of regional collaboration.

Keywords


  • اصغری سراسکانرود، صیاد؛ و زینالی، بتول (1393). تحلیل و پهنه‌بندی فراوانی فصلی توفان‌های گردوغباری ایران به‌منظور کاهش مخاطرات. مدیریت مخاطرات محیطی، 1(2)، 239-217. https://doi.org/10.22059/jhsci.2014.53122
  • سبحانی، بهروز؛ و عالی جهان، مهدی (1403). استخراج و تحلیل الگوهای سینوپتیک و پایش منشأ و مسیر عبور توفان‌های گردوغبار مطالعه موردی: استان اردبیل، ایران. تحقیقات کاربردی علوم جغرافیایی، 24(73)، 136-115. http://dx.doi.org/10.61186/jgs.24.73.137
  • فرحبخش، ملودی؛ علیجانی، بهلول؛ و فتاحی، ابراهیم (1394). تحلیل سینوپتیکی مخاطره گردوغبار (10 تا 12 مرداد 1392) در ایران. مدیریت مخاطرات محیطی، 2(1): 20-5. https://doi.org/10.22059/jhsci.2015.53918
  • قدم‌خیر، محمدصادق؛ برنا، رضا؛ مرشدی، جعفر؛ و قربانیان، جبراییل (1403). آشکارسازی نقش تغییرات پوشش گیاهی و رطوبت خاک در توزیع درون سالی رخدادهای گردوغبار استان خوزستان. پژوهش‌های تغییرات آب و هوایی، 17، 30-18. https://doi.org/10.30488/ccr.2024.422066.1168
  • کاتورانی، شلیر؛ احمدی، محمود؛ و داداشی رودباری، عباسعلی (1403). بررسی پراکنش فضایی و روند ذرات گردوغبار در غرب آسیا و ارتباط آن با تغییرات کاربری اراضی. تحقیقات آب و خاک ایران، 55(8)، 1432-1415. https://doi.org/10.22059/ijswr.2024.374563.669685
  • کرمی، سارا؛ قصابی، زهرا؛ و مرادی، محمد (1403). تحلیل سامانه‌های مؤثر بر رخداد هم‌زمان بارش و گردوخاک در غرب آسیا (5 تا 10 ماه مه 2024). نیوار، 48(127-126)، 168-151. https://doi.org/10.30467/nivar.2024.461752.1294
  • محمدپور، کاوه؛ خورشیددوست، علی‌محمد؛ و احمدی، گونا (1403). ارزیابی داده‌های زمینی و تصاویر ماهواره‌ای در تحلیل گردوغبارهای نیمه غربی ایران. تحلیل فضایی مخاطرات محیطی، 11(2)، 16-1. http://dx.doi.org/10.61186/jsaeh.11.2.1
  • وطن‌پرست قلعه‌جوق، فاطمه؛ صلاحی، برومند؛ و زینالی، بتول (1404). بررسی نقش نوسان مادن-جولیان بر فراوانی رخداد توفان‌های گردوغبار استان خوزستان و ردیابی مسیرهای ورود گردوغبار به آن. تحقیقات کاربردی علوم جغرافیایی، 25(77)، 217-198. http://dx.doi.org/10.61186/jgs.25.77.18
  • هژبرپور، قاسم؛ محمدی، سیاوش؛ اکبرنیا، علی؛ و احدی، مهیا (1394). تحلیل سینوپتیکی و آماری پدیدۀ گردوغبار شهر اردبیل، پنجمین کنفرانس منطقه‌ای تغییر اقلیم، تهران.
  • یاراحمدی، داریوش؛ نصیری، بهروز؛ خوش‌کیش، اسدالله؛ و نیکبخت، حاتم (1393). تأثیر نوسانات آب‌و‌هوایی بر رخداد پدیدۀ گردوغبار (مطالعه موردی: گردوغبارهای غرب جنوب غرب ایران). مهندسی اکوسیستم بیابان، 3(5)، 28-19.
  • Alizadeh, F., Falahatkar, S., Afzali, A., Mousavi, S. M. (2025). Detection of internal dust storm centers and their transport and dispersion modelling in southwestern Iran. Acta Geophys. 73, 4813–4829. https://doi.org/10.1007/s11600-025-01557-x
  • Asghari Sareskanrood, S. and Zeinali, B. (2014). Analyzing and Mapping of Dust Storms Seasonal Frequency over Iran for Hazards Reduction. Environmental Management Hazards, 1(2), 217-239. (in Persion) https://doi.org/10.22059/jhsci.2014.53122
  • Attiya, A. A., Jones, B. G. (2024). A Huge Dust Storm Influenced Air Quality on 16 May 2022 in Baghdad City, Iraq; Tracked Using Remote Sensing Techniques and Meteorological Data. IOP Conference Series: Earth and Environmental Science. 1371(2):022036. http://dx.doi.org/10.1088/1755-1315/1371/2/022036
  • Bilal, M., Nichol, J. E., Nazeer, M. (2016). Validation of Aqua-MODIS C051 and C006 operational aerosol products using AERONET measurements over Pakistan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 2074-2080. https://doi.org/10.1109/JSTARS.2015.2481460
  • Faith, W., Atkisson, Jr. (1972). Meteorology (pp. 30-59) in Air Pollution, Wiley Interscience, NY.
  • Farahbakhsh, M., Alijani, B. & Fattahi, E. (2015). Synoptic analysis of Iran dust storm hazard (July 30 to August 2, 2012). Environmental Management Hazards, 2(1), 5-20. (in Persion) https://doi.org/10.22059/jhsci.2015.53918
  • Gao, T., Han, J., Wang, Y., Pei, H., & Lu, S. (2012). Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy Lands in northern China during 2001–2008. Meteorological Applications, 19(3), 265-278. https://doi.org/10.1002/met.251
  • Ghadamkheir, M. S., Borna, R., Morshedi, J. & Ghorbanian, J. (2025). Revealing the role of changes in vegetation cover and soil moisture in the annual distribution of dust events in Khuzestan province. Climate Change Research, 5(17), 17-30. (in Persion) https://doi.org/10.30488/ccr.2024.422066.1168
  • Ghomeshion, M., Vali, A. A., Ranjbar Fordoei, A., Mousavi, H. (2022). Investigating the effect of land cover on dust spatial distribution in Southern Khuzestan province. ECOPERSIA. 3(10), 179-189. https://ecopersia.modares.ac.ir/article-24-57777-en.html
  • Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences, 21(1):65, http://dx.doi.org/10.4103/1735-1995.189646
  • Hejabarpour, G., Mohammadi, S., Akbarnia, A., & Ahadi, M. Synoptic and statistical analysis of dust phenomenon in Ardabil city, Fifth Regional Climate Change Conference, February 25, 2015, Tehran. (in Persion)
  • Indoitu, R., Orlovsky, , & Orlovsky, N. (2012). Dust storms in Central Asia: Spatial and temporal variations. Journal of Arid Environments, 85(6), 62-70. http://dx.doi.org/10.1016/j.jaridenv.2012.03.018
  • Karami, S., Ghassabi, Z., Moradi, M. (2024). Analysis of Systems Affecting the Simultaneous Events of Precipitation and Dust Over West Asia (May 5-10, 2024). Nivar, 48(126-127), 151-168. (in Persion) https://doi.org/10.30467/nivar.2024.461752.1294
  • Katorani, S., Ahmadi, M. and Dadashi-Roudbari, A. (2024). Examination of the spatial dispersion and trend of Dust Optical Depth (DOD) in West Asia and its relation with land use change. Iranian Journal of Soil and Water Research, 55(8), 1415-1432. (in Persion) https://doi.org/10.22059/ijswr.2024.374563.669685
  • Meng, H., Wang, F., Bai, G., & Li, H. (2025). A Study on Dust Storm Pollution and Source Identification in Northwestern China. Toxics, 13(1), 33. https://doi.org/10.3390/toxics13010033
  • Mohammadpour, K., Khorshid-Doust, A. M., & Ahmadi, G. (2024). Assessment of ground-based dataset and satellite remotely sensed images for analyzing of dust over western Iran. Journal of Spatial Analysis Environmental Hazards, 11 (2): 1-16. (in Persion) http://dx.doi.org/10.61186/jsaeh.11.2.1
  • O’Hara, S. L., Clarke, M. L., Elatrash, M. S. (2006). Field measurements of desert dust deposition in Libya. Atmospheric Environment, 40(21), 3881-3897. http://dx.doi.org/10.1016/j.atmosenv.2006.02.020
  • Sari Sarraf, B. , Rasouli, A. A., Mohammadi, G. H., Sadr, A. H. (2016). Long-term trends of seasonal dusty day characteristics-West Iran. Arabian Journal of Geosciences, 9(10)- 563. http://dx.doi.org/10.1007/s12517-016-2589-1
  • Sharif, F., Khan, A., Sheeba, A. (2015). Spatiotemporal distribution of Aerosol and Cloud properties over Sindh using MODIS satellite data and a HYSPLIT Model. Aerosol and Air Quality Research, 15(2), 657-672.
  • Sobhani B, Aalijahan M. (2024). The extraction of synoptic patterns, and monitoring the origin and pathway of dust storms; Case study: Ardabil province, Iran. jgs. 24(73), 137-162. (in Persion) http://dx.doi.org/10.61186/jgs.24.73.137
  • Tan, C., Liu, C., Li, T., Liu, X., Tang, M., & Zhao, T. (2025). Spatiotemporal Variations and Key Driving Factors of Dust Storms in China’s Source Regions from 2000 to 2024. Atmosphere 16(5):589. http://dx.doi.org/10.3390/atmos16050589
  • (2022). Global Assessment of Sand and Dust Storms. United Nations Environment Programme.
  • Vatanparast Galeh Juq F, Salahi B, Zeinali B. (2025). Investigating the Role of the Madden-Julian Oscillation (MJO) on the Frequency of Dust Storms in Selected Stations of Khuzestan Province and Tracking the Paths of Dust Entering it. jgs. 25(77), 198-217. (in Persion) http://dx.doi.org/10.61186/jgs.25.77.18
  • (2021). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. World Health Organization.
  • Yarahmadi, D., Nasiri, B., Khoshkish, A., & Nikbakht, H. (2014).Climate change and dusty days in the west and southwest of Iran. Desert Ecosystem Engineering, 3(5), 19-28. (in Persion)