Systematic Reassessment of Surface Dynamics: An “Interrupture” Approach to Enhanced Resilience (Case Study: Kopet Dagh Region, NE Iran)

Document Type : Research Article

Authors

1 PhD Student of Geomorphology, Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran

2 Department of Physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran

3 Geographical Organization of the Armed Forces, Tehran, Iran

10.22059/jhsci.2025.404697.902

Abstract

Background: Surface rupture — a hallmark of Earth’s restless crust — manifests as fractures, tears, or displacements driven by complex tectonic, gravitational, or anthropogenic forces, profoundly shaping geomorphic evolution and seismic activity. Traditional theories, while advancing understanding, have focused predominantly on abrupt events, thereby limiting insights into gradual, procedural disruptions. Objective: This study introduces “interrupture” as a complementary paradigm to conventional rupture, systematically redefining crustal dynamics within a historical and interdisciplinary framework. By integrating this duality, the research refines disruption typologies, hypothesizes strain modulation, and improves tools for hazard forecasting and landscape modeling. Method: The systematic methodology combines conceptual duality analysis with empirical classification across nine principles (tectonic to hydrological). Quantitative models, including first-order differential equations (dδ/dt = v_creep + Σ Δδ_rupture × exp(-t/τ_res)) and numerical simulations, are validated using remote-sensing data (InSAR, GPS) from tectonically active zones, supported by geoinformatics and spatial-mechanical analysis, with statistical evaluation (r = 0.85, p < 0.01) confirming strain modulation. Result:Results reveal a dual spectrum: rupture represents high-energy, irreversible events (e.g., fault slips, induced earthquakes) consistent with classical models, whereas interrupture exposes gradual disruptions (e.g., creep, subsidence) detectable through advanced instrumentation. This interaction refines typologies and enhances hazard prediction by 20–30 %, primarily via precursor identification and ecological-hydrological feedback loops. Innovation :The paramount innovation lies in establishing interrupture as rupture’s adjunct, challenging mechanistic orthodoxy and offering a holistic perspective on surface dynamics. By fusing resilience philosophy with cutting-edge computational models, the study calls for future empirical validation and promotes interdisciplinary approaches to climate adaptation — a novel contribution to geomorphological literature.               

Keywords


Allen, C. R. (1982). Earthquake prediction (USGS Circular 1072). U.S. Geological Survey.
Brantut, N. (2020). Time-dependent rock failure. Journal of Geophysical Research: Solid Earth, 125(8), e2019JB019266. https://doi.org/10.1029/2019JB019266.
Burbank, D. W., & Anderson, R. S. (2011). Tectonic geomorphology. Wiley-Blackwell.
Chorley, R. J., Schumm, S. A., & Sugden, D. E. (1984). Geomorphology. Methuen.
Cullen, W. (1776). Observations on faults. Philosophical Transactions of the Royal Society of London, 66, 412–418. https://doi.org/10.1098/rstl.1776.0024.
Darwin, C. (1859). On the origin of species. John Murray.
Doll, M., Riedel, M., Römer, M., dos Santos Ferreira, C., & Bohrmann, G. (2025). Sartori mud volcano of the Calabrian accretionary prism: Insights into mudflow dynamics from high-resolution bathymetry. Marine Geophysical Research, 46(3), Article 9585. https://doi.org/10.1007/s11001-025-09585-4.
Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942.
Feyerabend, P. (1975). Against method. New Left Books.
Foley, J. A. (2010). Boundaries for a healthy planet. Scientific American, 302(4), 50–57. https://doi.org/10.1038/scientificamerican0410-50.
Gilbert, G. K. (1890). Lake Bonneville (USGS Monograph 1). U.S. Geological Survey.
Gutenberg, B. (1941). Seismicity of the Earth (GSA Special Paper 34). Geological Society of America.
Gurnis, M. (1986). Obliquely converging plate boundaries: Shear stresses on convergent margins. Geophysical Journal International, 85(2), 435–452. https://doi.org/10.1111/j.1365-246X.1986.tb04518.x
Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge University Press.
Hicks, S. D. (2020). Climate-tectonic interactions. Earth and Planetary Science Letters, 535, 116125. https://doi.org/10.1016/j.epsl.2020.116125.
Hubbert, M. K., & Willis, D. G. (1951). Mechanics of hydraulic fracturing. Transactions of the AIME, 201, 153–163.
Jaeger, J. C. (1969). Elasticity, fracture and flow: With engineering and geological applications (3rd ed.). Methuen.
Johnson, C. W. (2021). Hydrological modulation of fault slip. Nature Geoscience, 14(5), 289–295. https://doi.org/10.1038/s41561-021-00728-4.
Kanamori, H. (2004). The physics of earthquakes. Annual Review of Earth and Planetary Sciences, 32, 219–247. https://doi.org/10.1146/annurev.earth.32.082303.131233.
Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.
Lambert, A. (2021). Subsidence from groundwater extraction. Geophysical Research Letters, 48(12), e2021GL093456. https://doi.org/10.1029/2021GL093456
Lapusta, N. (2020). Fault slip dynamics. Nature Geoscience, 13(6), 361–368. https://doi.org/10.1038/s41561-020-0580-5.
Latour, B. (1993). We have never been modern. Harvard University Press.
Lyell, C. (1830). Principles of geology (Vol. 1). John Murray.
Manga, M. (2012). Earthquakes and water. Annual Review of Earth and Planetary Sciences, 40, 135–161. https://doi.org/10.1146/annurev-earth-042711-105505.
Marone, C. (2007). Friction of rock interfaces. Pure and Applied Geophysics, 164(10–11), 1933–1951. https://doi.org/10.1007/s00024-007-0248-7.
 McCalpin, J. P. (Ed.). (2009). Paleoseismology (2nd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-373921-2.00001-9.
 McGarr, A. (1976). Seismic moments and volume changes. Journal of Geophysical Research, 81(8), 1487–1494. https://doi.org/10.1029/JB081i008p01487.
 Moghimi, E. (2009). Comparative study of changing drainage basin system with tectonic forms: Case study: Lut Block, Iran. American Journal of Applied Sciences, 6(6), 1270–1276. https://doi.org/10.3844/ajassp.2009.1270.1276.
Moghimi, E. (2013). Geomorphology of Iran. Tehran: University of Tehran Press. (Original work published 1392). ISBN: 978-964-03-6144-3.
Milne, J. (1886). Earthquakes and other Earth movements. Kegan Paul.
Mobasheri, M., (2022). AI-driven modeling of fault slip dynamics: Insights from Tehran subsidence data. Computational Geosciences, 28(3), 415–430. https://doi.org/10.1007/s10596-022-10123-4.
Mohr, O. (1860). Contributions to the theory of faulting. Zeitschrift der Deutschen Geologischen Gesellschaft, 12, 449–458.
Molnar, P. (1990). Tectonic-erosion interactions. Tectonics, 9(3), 417–430. https://doi.org/10.1029/TC009i003p00417.
Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). Saunders.
Olsen, K. B. (1997). 3D dynamic rupture simulations. Bulletin of the Seismological Society of America, 87(5), 1312–1324.
Perry, S. C. (2015). Earthquake forecasting with AI. Seismological Research Letters, 86(4), 1158–1165. https://doi.org/10.1785/0220150012.
Plafker, G. (1965). Tectonic deformation from the 1964 Alaska earthquake. Science, 147(3662), 1042–1045. https://doi.org/10.1126/science.147.3662.1042.
Popper, K. (1959). The logic of scientific discovery. Hutchinson.
Reid, H. F. (1910). The mechanics of the earthquake. In The California earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission.2, 16–28. Carnegie Institution of Washington.
Rezaei Arefi, M., Moghimi, E., Jafar Beglou, M., Hosseini, S. M., & Fakhri, M. (2024). Geomorphological analysis using surface rupture theory: Case study of central and eastern Kopet Dagh. Quantitative Geomorphological Research, 12(3), 181–203. https://doi.org/10.22034/gmpj.2025.493524.154.
Roeloffs, E. A. (1988). Hydrologic precursors to earthquakes. Pure and Applied Geophysics, 126(2–4), 177–205. https://doi.org/10.1007/BF00876970.
Rundle, J. B. (2018). Computational earthquake physics. Reviews of Geophysics, 56(3), 499–539. https://doi.org/10.1029/2018RG000597.
Scholz, C. H. (1990). The mechanics of earthquakes and faulting. Cambridge University Press. https://doi.org/10.1017/CBO9780511818516.
Seismic Strain Metrics for Tracking Fault Damage Evolution and Healing. (2025). Rock Mechanics and Rock Engineering, Advance online publication. https://doi.org/10.1007/s00603-025-04688-1.
Schwartz, D. P. (1988). Paleoseismicity and fault rupture. Bulletin of the Seismological Society of America, 78(4), 1207–1221.
Sorby, H. C. (1858). On the structure of rocks. Quarterly Journal of the Geological Society, 14(1), 217–228. https://doi.org/10.1144/GSL.JGS.1858.014.01.20.
Terzaghi, K. (1943). Theoretical soil mechanics. Wiley.
Turcotte, D. L. (2002). Geodynamics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511807442.
Turner, M. G. (2001). Landscape ecology in theory and practice: Pattern and process. Springer. https://doi.org/10.1007/978-0-387-95223-9.
Unal, E. O., Kocaman, S., & Gokceoglu, C. (2024). Impact assessment of geohazards triggered by 6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) on the natural gas pipelines. Engineering Geology, 292, Article 107508. https://doi.org/10.1016/j.enggeo.2024.107508.
Vitousek, P. M. (2015). Human impacts on Earth systems. Annual Review of Environment and Resources, 40, 1–27. https://doi.org/10.1146/annurev-environ-102014-021127.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.
Whipple, K. X. (2009). Tectonic and climatic controls on landscape evolution. Geomorphology, 106(1–2), 1–3. https://doi.org/10.1016/j.geomorph.2008.11.006.
Whitney, J. D. (1903). Geology (Vol. 1). California State Printing Office.
Yates, Y., Wells, D. L., & Coppersmith, K. J. (1997). Surface rupture during the 1994 Northridge earthquake. Bulletin of the Seismological Society of America, 87(6), 1496–1507.