Spatial Simulation, Geomorphological Hazards and Limitations of Physical Development of Malekan City

Document Type : Applied Article

Authors

1 PhD in Geomorphology, Geography and Planning Faculty, University of Tabriz, Iran

2 PhD Candidate in Geomorphology, Geography and Planning Faculty, Tabriz University, Iran

Abstract

Geomorphology, in some cases, provides a good platform for physical development of cities. However, physical development of cities, sometimes result in unsuitable and hazardous geomorphologic process and form. Therefore, geomorphology of the region is of importance in physical planning and urban development. In this study, based on historical trends of expanding the boundaries of the Malekan city (located in eastern Azerbaijan province), the pattern for future growth of the city was simulated, using Markov Chains–Cellular Automata hybrid model. Then, limitations and geomorphological hazards ahead in relation with the continuation of the current growth pattern are investigated. Most important materials used in this research include: topographic maps, geological map, GIS and RS software, ASTER, SPOT, and Landsat satellite imagery. Monitoring urban expansion from 1985 indicates that the spatial growth pattern of the city has been towards the barren lands and lagoon area in recent years. By developing past growth patterns and taking into account the transition probabilities and the neighborhood rules, development trend of the city mainly will be towards lagoon and hillslope units. Geomorphology of the study area will impose limitations and hazards to his parts. In this context, most important problems relating to the physical development of Malekan city include: lodgment of some parts of the city on the steep, dealing with hillslope landform with low strength lithology, high levels of water table in lagoon area, and flooding probability in some parts of the city.

Keywords


[1].       احدنژاد روشتی، محسن؛ زلفی، علی؛ شکری‌پور دیزج، حسین. (1390). ارزیابی و پیش‌بینی گسترش فیزیکی شهرها با استفاده از تصاویر ماهواره‌ای چندزمانه و سیستم اطلاعات جغرافیایی (مطالعۀ مورد شهر اردبیل 1363-1400). آمایش محیط، شمارۀ 15: 124-107.
[2].               جداری عیوضی، جمشید. (1386). ژئومورفولوژی ایران، چاپ هشتم، انتشارات دانشگاه پیام نور.
[3].               رجائی، عبدالحمید. (1382). کاربرد جغرافیای طبیعی در برنامه‌ریزی شهری و روستایی، چاپ اول، انتشارات سمت.
[4].               رجائی، عبدالحمید. (1387). کاربرد ژئومورفولوژی در آمایش سرزمین و مدیریت محیط، چاپ سوم، نشر قومس.
[5].               روستایی، شهرام؛ جباری، ایرج. (1390). ژئومورفولوژی مناطق شهری، چاپ سوم، انتشارات سمت.
[6].               سازمان زمین­شناسی کشور، نقشۀ زمین‌شناسی برگه مراغه با مقیاس 1:100000 به‌همراه گزارش.
[7].               شهرابی، مصطفی. (1373). شرح نقشۀ زمین­شناسی چهارگوش ارومیه، چاپ اول، سازمان زمین‌شناسی کشور.
[8].        علی‌محمدی سراب، عباس؛ متکان، علی‌اکبر؛ میرباقری، بابک. (1389). ارزیابی کارایی مدل سلول‌های خودکار در شبیه‌سازی گسترش اراضی شهری در حومۀ جنوب غرب تهران. مدرس علوم انسانی-برنامه‌ریزی و آمایش فضا، دورۀ چهاردهم، شمارۀ2: 102-81.
[9].  Benenson, I., and Torrens, P. M. (2004). Geosimulation: Object-based modeling of urban phenomena. Computers, Environment and Urban Systems, Vol. 28, pp. 1–8.
[10].             Clarke, K. C. (2008). Mapping and modelling land use change: An application of the SLEUTH model. In C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar, & D. Duncan (Eds.),Landscape analysis and visualisation: Spatial models for natural resource management and planning, pp. 353–366, Springer.
[11].             Clarke, K. C., Brass, J. A., Riggan, P. J. (1994). A cellular automaton model of wildfire propagation and extinction. Photogrammetric Engineering and Remote Sensing, Vol. 60(11), pp.1355–1367.
[12].             Coulthard, T.J. (1999). Modelling upland catchment response to Holocene environmental change. Unpublished phd thesis, school of geography, university of Leeds, U.K. 181pp.
[13].             Coulthard, T.J., Van de Wiel, M.J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, Vol. 31, pp. 123-132.
[14].             Eastman, J. Ronald (a). (2012). IDRISI Selva Tutorial, Manual Version 17. Clark Labs, Clark University.
[15].             Eastman, J. Ronald (b). (2012). IDRISI Selva Manual, Manual Version 17. Clark Labs, Clark University.
[16].             Fonstad, Mark. A. (2006). Cellular automata as analysis and synthesis engines at the geomorphology–ecology interface. Geomorphology, Vol. 77, pp. 217-234.
[17].             Garcia, Andres. Manuel., Sante, Ines., Crecente, Rafael., Miranda, David. (2011). An analysis of the effect of the stochastic component of urban cellular automata models. Computers, Environment and Urban Systems, Vol.35, pp. 289–296.
[18].             Gutman, Garik., Janetos, Anthony. C., Justice, Christopher. O., Moran, Emilio. F., Mustard, John. F., Rindfuss, Ronald. R., Skole, David., Turner, Billy Lee., Cochrane, Mark. A. (2004). Remote sensing and digital image processing, Volume 6, land change science: observing, monitoring and understanding trajectories of change on the earth’s surface. Springer.
[19].             Li, X and Yeh, A. G. (2002). Integration of principal components analysis and cellular automata for spatial decision making and urban simulation. Science in China, Vol. 45(6), pp. 521–529.
[20].             Liu, Yan. (2009). modelling urban development with geographical information systems and cellular automata. CRC Press, Taylor & Francis Group. 
[21].             Menard, A and Marceau, D. J. (2007). Simulating the impact of forest management scenarios in an agricultural landscape of Southern Quebec, Canada, using a geographic cellular automata. Landscape and Urban Planning, Vol. 79 (3–4), pp. 253–265.
[22].             Mitsova, Diana., Shuster, William., Wang, Xinhao. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, Vol. 99, pp. 141–153.
[23].             Moreno, N., Wang, F., Marceau, D. J. (2009). Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model. Computers, Environment and Urban Systems, Vol. 33(1), pp. 44–54.
[24].             Moreno, N.L. (2008). A vector-based geographical cellular automata model to mitigate scale sensitivity and to allow objects’ geometric transformation. A thesis submitted to the faculty of graduate studies in partial fulfilment of the requirements for the degree of doctor of philosophy. University of Calgary.
[25].             Pan, Ying., Roth, Andreas., Yu, Zhenrong., Doluschitz, Reiner. (2010). The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Computers, Environment and Urban Systems, Vol. 34, pp. 400–408.
[26].             Sante, Ines., Garcia, Andres. M., Miranda, David., Crecente, Rafael. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, Vol, 96. pp: 108–122.
[27].             Sirakoulis, G. Ch., Karafyllidis, I., Thanailakis, A. (2000). A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling, Vol. 133(3), pp. 209–223.
[28].             Van Vliet, J., White, R., Dragicevic, S. (2009). Modeling urban growth using a variable grid cellular automata. Computers, Environment and Urban Systems, Vol. 33(1), pp. 35–43.
[29].             Wang, Fang., Hasbani, Jean-Gabriel., Wang, Xin., Marceau, Danielle J. (2011). Identifying dominant factors for the calibration of a land-use cellular automata model using Rough Set Theory. Computers, Environment and Urban Systems, Vol. 35, pp.116–125.
[30].             White, R., Engelen, G., Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and Design, Vol. 24(3), pp. 323–343.
[31].             Wolfram, S. (1984). Computation theory of cellular automata. Communications in Mathematical Physics, Vol. 96, pp.15–57.
[32].             Wu, Fulong. (2002). Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, Vol. 16, No. 8, pp. 795-818.
[33].             Yang, Xiaojun and Li, Jonathan. (2013). Advances in mapping from remote sensor imagery: techniques and applications. CRC Press, Taylor & Francis Group.
[34].             Yassemi, S., Dragicevic, S., Schmidt, M. (2008). Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling, Vol. 210 (1–2), pp. 71–84.