Risk Assessment of Engineered Nanoparticles (ENPs)

Document Type : Applied Article

Authors

1 Professor, Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Iran

2 Assistant Professor, Faculty of Chemical Engineering, University of Golestan, Iran

Abstract

Although the applications of nanotechnology have been widely studied, the risk measurement and assessment of nanoparticles effect on biological systems and ecosystems has not been clearly demonstrated. The small size and specific properties of nanoparticles makes them a carrier for toxic chemical pollutants. Several studies show the nanoparticles and nanotubes can release in the environment and cause harmful effects on human. In addition, nanoparticles can attach to colloid particles and affect their bioavailability and uptake to cells and microorganisms. Concerns about the side effects of nanoparticles on human, environment and ecosystem are increasing due to the appearance of unique properties of nanoparticles and increased exposure of human to them. The aim of nanotoxicology, a new branch in toxicology researches, is to evaluate the risk of products prepared by nanotechnology. Nanoparticles can enter organisms through water, soil and air. In this study the probable risks associated with nanoparticles on human and environment is demonstrated.

Keywords


[[1]]. Holister, P; Weener, J; Vas, C; Harper, T; (2009). Nanoparticles: Technology White Papers nr. 3.Cientifica: London, UK.
[[1] ]. Handy, RD; von der Kammer, F; Lead, JR; Hassellov, M; Owen,  R; Crane, M; (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 4, DOI: 10.1007/s10646-008-0199-8.
[[1]]. Aitken, RJ; Chaudhry, MQ; Boxall, ABA; Hull, M; (2006). Manufacture and use of nanomaterials: current status in the UK and global trends. Occupational Medicine, 56, doi:10.1093/occmed/kql051.
[[1]]. Brigger, I; Dubemet, C; Courveur, P; (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54, 5, doi:10.1016/S0169-409X(02)00044-3.
[[1]]. Hannah,W; Thompson, P. B; (2008). Nanotechnology, risk and the environment: A review. Journal of Environmetal Monitoring, 10,3, doi: 10.1039/b718127m.
[[1]]. Shatkin, J.A; (2012). Nanotechnology: health and environmental risks. CRC Press, 385 pp.
[[1]]. Aitken, R; Creely, K; Tran, C; (2004). Nanoparticles: An Occupational Hygiene Review; Health and Safety Executive, Institute of Occupational Medicine (Edinburgh, Scotland).
[[1]]. Yang, L; Watts, DJ; (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158, 2, doi:10.1016/j.toxlet.2005.03.003.
[[1]]. Lam, C; James, J; McCluskey, R; Hunter, R; (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77, 1, DOI: 10.1093/toxsci/kfg243.
[[1]]. Poland, C; Duffin, R; Kinloch, I; Maynard, A; Wallace, W; Seaton, A; Stone, V; Brown, S; Macnee, W; Donaldson, K; (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3, 7, doi:10.1038/nnano.2008.111.
[[1]]. Cui, D; Tian, F; Ozkan, C; Wang, M; Gao, H; (2005). Effect of single wall carbon nanotubes on human HEK293 cells. Toxicological Letters,155, 1, doi:10.1016/j.toxlet.2004.08.015.
[[1]]. Kang, S; Mauter, M; Elimelech, M; (2008). Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental Science & Technology, 42, 19, DOI: 10.1021/es8010173.
[[1]]. Oberdörster, E; (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in juvenile largemouth bass. Environmental Health Perspective, 112, 10, doi:  10.1289/ehp.7021.
[[1]]. Yamawaki, H; Iwai, N; (2006). Cytotoxicity of water-soluble fullerene in vascular endothelial cells. American Journal of Physiology- Cell Physiology, 290, 6, DOI: 10.1152/ajpcell.00481.2005.
[[1]]. Li, X; Brown, D; Smith S; MacNee, W; Donaldson, K (1999). Short term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhalation Toxicology. 11, 8, doi:10.1080/089583799196826.
[[1]]. Sayes, C; Marchione, A; Reed, K; Warheit, D; (2007). Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Letters, 7, 8, DOI:10.1021/nl0710710.
[[1]]. Wang, B; Feng, W; Wang, T; Jia, G; Wang, M; Shi, J; Zhang, F; Zhao, Y; Chai, Z; (2006). Acute toxicity of nano and micro scale zinc powder in healthy adult mice. Toxicological Letters, 161, 2, doi:10.1016/j.toxlet.2005.08.007
[[1]]. Warheit, D; Webb, T; Sayes, C; Colvin, V; Reed, K; (2006). Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicological Sciences, 91, 1, doi: 10.1093/toxsci/kfj140.
[[1]]. Wang, J; Zhou, G; Chen, C; Yu, H; Wang, T; Ma, Y; Jia, G; Gao, Y; Li, B; Sun, J; Li, Y; Jiao, F; Zhao, Y; Chai, Z; (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicological Letters, 168, 2, doi:10.1016/j.toxlet.2006.12.001.
[[1]]. Chen, M; von Mikecz, A; (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Experimental Cell Research, 305, 1, doi:10.1016/j.yexcr.2004.12.021..
[[1]] . مرضیه حجازی، حامد جباروند بهروز، رضا حضرتی، "مخاطرات سم شناسی استفاده از نانوذرات نقره در مواد غذایی و بسته بندی مواد غذایی، بیست و یکمین کنگره ملی علوم و صنایع غذایی ایران، 1392.
[[1]]. Long, T.C; Saleh, N; Tilton, R. D; Lowry, G. V; Veronesi, B; (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain nanoparticle eurotoxicity. Environmental science & technology, 40, 14, DOI:10.1021/es060589n.
[[1]]. Hoshino, A; Hanaki, K; Suzuki, K; Yamamoto, K; (2004). Applications of t-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochemical and Biophysical Research Communications, 314, 1, DOI: 10.1016/j.bbrc.2003.11.185.
[[1]]. Zhang, Q; Kusaka, Y; Zhu, X; Sato, K; Mo, Y; Kluz, T; Donaldson, K; (2003). Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. Journal of occupational health. 45,1, DOI: :http://dx.doi.org/10.1539/joh.45.23.