Feasibility Study of Earthquake Prediction through a Study of b-Value Precursor (Case study: Silakhor Earthquake, Iran)

Document Type : Applied Article

Author

Associate Professor, Institute of Geophysics, University of Tehran, Iran

Abstract

The purpose of the present study is to compare the changes in b-value parameter using frequency-magnitude distribution for the data before and after the Silakhor earthquake by Gutenberg-Richter relation. The variations of b-values are investigated using Broadband Iranian National Seismic Network Center (BIN). Besides, spatial and time variations of the parameters were analyzed. The spatial variation of b-value parameter in the epicentral area showed anomalies before the event. Therefore, some important information was estimated about the changes in stress by reducing b-value in the region. On the other hand, anomalies were seen in b-value parameter in aftershocks sequences, representing a reduction in stress in the region. Generally, the results of this study indicate that the b-value parameter had a decreasing trend prior to the March 31, 2006 event in Silakhor, and an increasing trend after that. The increase and decrease of this parameter is associated with the increase and decrease of stress in active faults and a change in slip rate in the region. These anomalies in b-value parameters in the region suggest that b-value changes can be offered as a precursor for estimating the time and location of earthquakes along segments of the faults in the region. Therefore, proper data recording in different regions and permanent monitoring of this parameter can be an important step toward the long-term or medium-term prediction, and especially toward the identification of the approximate location of future events in the active seismic zones.

Keywords


 
]1[. جمیله واشقانى فراهانى و مهدى زارع (2009). بررسی پیش‌لرزه‌های زمین‌لرزه یازدهم فروردین ماه 1385 سیلاخور. نخستین همایش پیش‌یابی زلزله در پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.
[2]. Enescu B., Mori J., Miyazawa M., Kano, Y. (2009). Omori-Utsu law c-values associated with recent moderate earthquakes in Japan, Bull. Seismol. Soc. Am., 99, 2A, 884–891, doi:10.1785/012008021.
[3]. Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst., Univ. Tokyo, 40, pp. 831-853.
[4]. Scholz, C.H. (1968).The frequency-magnitude relation of micro-fracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am. 58, 399-415.
[5]. Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution, Geophys. J. R. Astron. Soc., 31, pp. 341-359.
[6]. Wa rren N.W. and Latham G.V., 1970, An experimental study of thermally induced icrofracturing and its relation to volcanic seismicity, J. Geophys. Res., 75, pp. 4455–4464.
[7]. Mogi, K. (1990). Seismicity before and after large shallow earthquakes around the Japanese islands, Tectonophysics, 175, 1-33.
[8]. Urbancic, T. I, Young, R. P. (1993). Space-time variations in source parameters of mining-induced seismic events with M<0, Bull. Seismol. Soc. Am., 83, 378-397.
[9]. Molchan, G., Dmitrieva, O. (1990). Dynamic for the magnitude-frequency relation for foreshocks, Phys. Earth Planet. Inter. 61, 99-112.
[10]. Gutenberg, R. and Richter, C. F. (1944). Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188.
[11]. Nuannin, P, Kuljanek, O (2012), A Study of b-value Precursors Applied to the Andaman-Sumatra Region, Journal of Earth Science and Engineering, 2, 166-188.
[12]. Westerhaus, M., M. Wyss, R. Yilmaz, and J. Zschau (2002). Correlating variations of b values and crustal deformations during the 1990s may have pinpointed the rupture initiation of the Mw = 7.4 Izmit earthquake of 1999 August 17. Geophysical Journal International 148, 139–152.
 [13]. Aki, K. (1965). Maximum lilkelihood estimate of b in the formula logN=a-bM and its confidence limits, Bull. Earthq. Res. Inst., 43, 237-239.
[14]. Ustu, T. (1965). A method in determining the value of b in a formula logn =a-bM showing the magnitude frequency for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99-103.
[15]. Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data, Bull. Seismol. Soc. Am., 73(3), 831-851.
[16]. Shi, Y., Bolt, B.A. (1982). The standard error of the magnitude-frequency bvalue, Bull. Seismol. Soc. Am., 72, 1677-1687.
[17]. Wiemer, S. (2001). A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 72, 373-382.
] 18.[ جمیله واشقانى فراهانى (1386). پایان‌نامة کارشناسی ارشد. برآورد جنبش شدید زمین با استفاده از روش توابع تجربی گرین در زلزله 31 مارس 2006 سیلاخور بروجرد.
[19]. Chan, H. C., Wu, Y.M, Tseng, T. L, Lin and Chen, C.C. (2012). Spatial and temporal evolution of b-values before large earthquakes in Taiwan, Tectonophysics., 532-535, 215-222.
[20]. Nuannin, P. and Kulhanek, O. (2012). A Study of b-value Precursors Applied to the Andaman-Sumatra Region, Journal of Earth Science and Engineering, 2 ,166-188.
[21]. Urbancic, T. I., C-I. Trifu, J. M. Long, and R.P. Young (1992). Space-time correlation of b values with stress release, PAGEOPH., 139 (3/4), 449-462.
[22]. Wyss, M., F. Klein, K. Nagamine, and S. Wiemer (2001). Anomalously high bvalues in the South Flank of Kilauea volcano, Hawaii: evidence for the distribution of magma below Kilauea’s East rift zone, J. Volcan. Geotherm. Res., 106, 23-37.
[23]. Wiemer, S. and Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times, J.Geophys. Res., 102, 15,115–15,128.
[24]. Wiemer, S. and Katsumata, K. (1999). Spatial variability of seismicity parameters in aftershock zones, J. Geophys. Res., 104(B6), 13,135–13,151.
[25]. Gerstenberger, M., S. Wiemer, D. Giardini (2001). A systematic test of the hypothesis the b-value varies with depth in California, Geophys. Res. Letts., 28(1), 57-60.
[26]. Nuannin, P. (2006). The Potential of b-value Variations as Earthquake Precursors for Small and Large Events. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 183.
[27]. Vasheghani-Farahani, J. (2014).Monitoring the variations of b-value and seismicity in the Makran ranges, the absence of a notable event in west of Makran subduction zone. Geodynamics Research International Bulletin; 2 (3): XXXIX-XLVII.
[28]. Vasheghani-Farahani, J, Zaré, M and Cichowicz, A. (2014). Microseismicity of Tehran region based on the data recorded in a local Network: 2004-2010. Episodes Journal; 37 (3): 206-217.
[29]. Gulia, L., Wiemer, S., Schoremmer, D. (2010). Asperity-based earthquake likelihood models for Italy, Annals of Geophysics, 53, 3, doi: 10.4401/ag-4843.
[30]. Wiemer, S, Wyss, M. (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv.Geophys. 45, 259-302.
[31]. Sammonds, P.R., P.G. Meredith, and I.G. Main (1992), Role of pore fluid in the generation of seismic precursors to shear fracture, Nature, 359, 228-230.
[32]. Molchan, G.M., T.L. Kronrod, and A.K Nekrasova (1999), Immediate foreshocks: time variation of the b-value, Phys. Earth Planet. Inter., 111, 229-240.