Assessment of the Effects of Life Cycle of Power Plants on the Pressure of Citizens (Case Study: Tabriz Thermal Power Plant)

Document Type : Applied Article

Author

Assistant Professor at geography and planning, University of Payam Nour

Abstract

The life cycle of thermal power plants is along with greenhouse gas emissions. Therefore, if the pollutants of the power plant and the role of each of these substances are not identified in the contamination of the air, it can seriously expose the physical and mental health of citizens to risks. Accordingly, the purpose of this study is to measure the contaminated materials of Tabriz thermal power plant and their effects on the air pollution of Tabriz metropolitan area as well as its effects over the psychological pressure of citizens. To measure the pollutants of the power plant the GWP100 method is used, and DASS21 and Marquam's Questionnaire are used to measure the spiritual and psychological pressures of citizens. The results showed that the most pollutant emissions from the Tabriz power plant are CO2 and NOx. The volume of these materials in cold seasons is more than warm seasons. Also, the findings of the effects of air pollution on spiritual and psychological pressures of citizens showed that the air pollution caused by the activity of the power plant greatly increases the spiritual and psychological pressure of the citizens. The feeling of change in everyday behavioral patterns, feelings of despair and despair in life, stress and psychological stress have been the highest correlation of 0.556, 0.511 and 0.503, respectively, which were in winter. The results of regression test showed that 29.32% of variance changes were due to air pollution caused by the life cycle of Tabriz power plant. In addition, the findings of this study showed that in the areas close to Tabriz thermal power plant, the amount of pollution and the amount of stress is higher than the distant regions. Due to the direction of winds that transfer the plant's greenhouse gases to the city of Tabriz, it is better to replace the power plant site within a short-term plan and replace the fuel of the power plant.

Keywords


[1].       توکل، محمد؛ نوذری، حمزه (1391). «تحلیل اثرات اقتصادی، اجتماعی و زیست‌محیطی صنعت پالایشگاه گاز پارسیان بر نواحی روستایی؛ مورد مطالعه: نواحی روستایی شهرستان مُهر در استان فارس». مطالعات و تحقیقات اجتماعی در ایران. دورة 1. ش 4: 48-29.
[2].       طالبیان، امیر؛ ملاکی، احمد (1391). «ارائة مدلی برای ارزیابی تأثیرات اجتماعی در صنعت نفت و گاز ایران». فصلنامة مطالعات توسعۀ اجتماعی. دورة 1. ش 3: 186-161.
[3].       گلابچی، محمود؛ تقی­زاده آذری، کتایون؛ سروش‌نیا، احسان (1395). طراحی الگوریتم سنجش پیشرفت پروژ‌ه‌ها با هدف کاهش مخاطرات زیست‌محیطی و اجتماعی ناشی از تأخیرات، فصلنامة مدیریت مخاطرات محیطی. دورة 3. ش 4: 314-301.
[4].              مقیمی، ابراهیم (1393). دانش مخاطرات (برای زندگی با کیفیت بهتر و محیط پایدارتر). تهران: انتشارات دانشگاه تهران.
[5]. Ahmadi, G. R.; Toghraie, D. (2016). “Energy and exergy analysis of Montazeri steam power plant in Iran”, Renewable and Sustainable Energy Reviews, 56: 454-463.
[6]. Anderson, J. O.; Thundiyil, J. G.; Stolbach, A. (2012).“Clearing the air: a review of the effects of particulate matter air pollution on human health”, Journal of Medical Toxicology, 8(2): 166-175.
[7]. Cappello, T.; Maisano, M.; D'Agata, A.; Natalotto, A.; Mauceri, A.; Fasulo, S. (2013). “Effects of environmental pollution in caged mussels (Mytilus galloprovincialis)”, Marine environmental research, 91: 52-60.
[8]. Carter, S. G. (2014). “Iran, Natural Gas and Asia's Energy Needs: A Spoiler for Sanctions?”, Middle East Policy, 21(1): 41-61.
[9]. DeBellis, E. A. (2015). “In Defense of the Clean Power Plan: Why Greenhouse Gas Regulation Under Clean Air Act Section 111 (d) Need Not, and Should Not, Stop at the Fenceline”, Ecology LQ, 42: 235.
[10].            Fadai, D.; Esfandabadi, Z. S.; Abbasi, A. (2011).“Analyzing the causes of non-development of renewable energy-related industries in Iran”, Renewable and Sustainable Energy Reviews, 15(6): 2690-2695.
[11].            Fthenakis, V. M.; Kim, H. C. (2007). “Greenhouse Gas Emissions From Solar Electric And Nuclear Power: A Life Cycle Study”, Energy Policy, Vol. 35: 2549-2557.
[12].            Gandhi, N.; Sirisha, D.; Mary Priyanka, V.; Arthisree, S. (2012). “Adsorption Studies on Mixed algae to control SO2 and NO2 pollution”, International Journal of Pharma and Bio sciences, 3(4): 304-310.
[13].            Hu, X.-K.; Su, F.; Ju, X.-T.; GAO, B.; Oenema, O.; Christie, P.; Zhang, F.-S. (2013). “Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes”, Environmental Pollution, 176: 198-207.
[14].            Lelieveld, J.; Evans, J.; Fnais, M.; Giannadaki, D.; Pozzer, A. (2015). “The contribution of outdoor air pollution sources to premature mortality on a global scale”, Nature, 525(7569): 367-371.
[15].            Liu, Y.; Yao, C.; Wang, G.; Bao, S. (2011). “An integrated sustainable development approach to modeling the eco-environmental effects from urbanization”, Ecological Indicators, 11(6): 1599-1608.
[16].            Ma, Z.; Xue, B.; Geng, Y.; Ren, W.; Fujita, T.; Zhang, Z.; Xi, F. (2013). “Co-benefits analysis on climate change and environmental effects of wind-power: A case study from Xinjiang, China”, Renewable energy, 57: 35-42.
[17].            Pidgeon, N. F.; Lorenzoni, I.; Poortinga, W. (2008). “Climate change or nuclear power – No thanks! A quantitative study of public perceptions and risk framing in Britain”, Global Environmental Change, 18: 69-85.
[18].            Rezaee, M. J.; Moini, A.; Makui, A. (2012). “Operational and non-operational performance evaluation of thermal power plants in Iran: A game theory approach”, Energy, 38(1): 96-103.
[19].            Rohatgi, U.; Jo, J. H.; Lee, J. C.; Bari, R. A. (2002). “Impact of the Nuclear Options on the Environment and the Economy”, Nucl. Technol. 137: 252 – 264.
[20].            Samimi, A.; Zarinabadi, S. (2012). “Reduction of greenhouse gases emission and effect on environment”, Journal of American Science, 8(8): 1011-1015.
[21].            Santoso, M.; Lestiani, D. D.; Damastuti, E.; Kurniawati, S.; Bennett, J. W.; Leani, J. J.; Karydas, A. G. (2016). “Trace elements and as speciation analysis of fly ash samples from an Indonesian coal power plant by means of neutron activation analysis and synchrotron based techniques”, Journal of Radioanalytical and Nuclear Chemistry, 309(1): 413-419.
[22].            Silva, R. A.; West, J. J.; Zhang, Y.; Anenberg, S. C.; Lamarque, J.-F.; Shindell, D. T.; . . . Folberth, G. (2013). “Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change”, Environmental Research Letters, 8(3): 034005.
[23].            Squicciarini, M. P.‌; Voigtländer, N. (2015). “Human capital and industrialization: Evidence from the age of enlightenment”, The Quarterly Journal of Economics, 130(4): 1825-1883.
[24].            Tang, D.; Li, T. Y.; Chow, J. C.; Kulkarni, S. U.; Watson, J. G.; Ho, S. S. H.; Perera, F. (2014). “Air pollution effects on fetal and child development: a cohort comparison in China”, Environmental Pollution, 185: 90-96.
[25].            Schinasi, L.; Horton, R. A.; Guidry, V. T.; Wing, S.; Marshall, S. W.; Morland, K. B. (2011). “Air pollution, lung function, and physical symptoms in communities near concentrated swine feeding operations”, Epidemiology, 22(2): 208-215.
[26].            Sadorsky, P. (2013). “Do urbanization and industrialization affect energy intensity in developing countries?”, Energy Economics, 37: 52-59.
[27].            Zhang, Q.; He, K.; Huo, H. (2012). “Policy: cleaning China's air” Nature, 484(7393): 161-162.
[28].            28. Gollin, D.; Jedwab, R.‌; Vollrath, D. (2016). “Urbanization with and without Industrialization”, Journal of Economic Growth, 21(1): 35-70.