Investigation of the Efficiency of Object-based Aerial Digital Images Processing Methods for Identifying and Estimating of Earthquake Damaging Impacts in Varzaghan City

Document Type : Applied Article


1 Master of Science (MSc) in Remote Sensing and GIS, University of Tabriz, Iran

2 Assistant Professor and Faculty Member of Remote Sensing and GIS Department, Tabriz University, Iran

3 Professor and member of faculty of geomorphology group of Tabriz University, Iran


Iran is known as one of the most susceptible countries in earthquakes hazard. Therefore, estimating of the damaged area, in context of earthquake hazard, provides valuable information for risk management. In this regard, the collapsed buildings and the degree of damage in the affected areas, and the type of damage caused by each building leads to assess the caused damage immediately. Technically speaking, this is part of the essential information for successful relief and rescue after an earthquake and reconstruction in disaster areas. In recent years, remote sensing technology has been used as a means of collecting information in crisis management in a large-scale disaster. Therefore, the remote sensing based damage assessment is an efficient technology for obtaining information from damaged buildings at short intervals, at a low cost, and with a vast field of view in urban areas. It has been widely using for assessing earthquake damage and monitoring the damaged buildings. The main objective of this research is to apply object based image analysis (OBIA) for damage detection and mapping in Varzaghan City.
Methods: On August 21, 2012, two earthquakes with a low distance of 6.4 and 6.3 magnitudes occurred, in 60 kilometers northeast of Tabriz. That earthquake caused the loss of 327 inhabitants, severe destruction of more than 20 villages and many buildings in both cities of Ahar and Varzaghan. The present study presents a basic object pattern for identifying the damaging effects of the earthquake that has been exploited using digital aerial photography and OBIA techniques. In this research, various satellite image object-based processing techniques have been tested and used to introduce to the most important spatial, geometric and spectral indices in the identification of damaged areas. At first, segmentation in two scales of 60 and 100 is performed using multi-resolution segmentation technique. We also used equal weight for all bands. The coefficient of compression was 0.5, and the coefficient was about 1/0. In doing so, 11 algorithms were applied for destructive detection.
Results: The results of the algorithms were compared and verified. We compared the capability of 11 algorithms. The results with 5 meters buffer scale indicated that all algorithms covers the correctness of over 90%. In the scale buffer of 10 meters, the results indicate the accuracy of 93.93 percent. According to results, the geometric and rounded shapes with 96.07% and elliptic with 92.12% represent the highest efficiency. Depending on the destructive areas extracted, shown on separate maps for each indicator, buildings destroyed in the old city's texture on the edge of the river, the core of the town of Varzagan has been concentrated. Basically, it has residential, livestock and storage facilities for keeping livestock forage. New or almost new materials with industrial, residential and other uses are not damaged. Results of this research are important for risk management, and can be used for rapid monitoring of damaged area and zones after earthquake hazards.


[1].       پیشنمازی، پروانه؛ استوار ایزدخواه، یاسمین (1394). «بررسی فرایند اطلاع‌رسانی در زلزلة دوگانة اهر- ورزقان و مخاطرات ناشی از آن». دانش مخاطرات، دورة 2، ش 2: 170-157.
[2].       حسنی‌تبار، سید محمد (1394). «کاربرد پردازش شیءگرای تصاویر ماهواره‌ای در طبقه‌بندی خودکار اشکال ناهمواری‌ها». پایان‌نامة کارشناسی ارشد.، دانشگاه تبریز، دانشکدة جغرافیا و برنامه‌ریزی.
[3].       رنجبر، حمید‌رضا؛ آزموده اردلان، علیرضا؛ دهقانی، حمید؛ سراجیان، محمد‌رضا؛ علیدوستی، علی (1393). «تسهیل فاز واکنش مدیریت بحران زلزله با استخراج ساختما‌ن‌ها بر‌مبنای آنالیز بافت از تصاویر ماهواره‌ای». دوفصلنامة علمی-پژوهشی مدیریت بحران، ش 5. 1393.
[4].       رضایی مقدم، محمد‌حسین؛ رضایی بنفشه، مجید؛ فیضی‌زاده، بختیار؛ نظم‌فر، حسین (1389). «طبقه‌بندی پوشش اراضی/ کاربری اراضی براساس تکنیک شیءگرا و تصاویر ماهواره‌ای؛ مطالعة موردی: استان آذربایجان غربی». پژوهش‌های آبخیزداری، ش 87: 35-20.
[5].       فرج‌زاده، منوچهر؛ بصیرت، فروغ (1385). «پهنه‌بندی حساسیت تشکیلات زمین‌شناسی در مقابل نیروهای زلزله در منطقه شیراز با استفاده از سنجش از دور». فصلنامة پژوهش‌های جغرافیایی. دوره 38. ش 55: 72-59.
[6].       متکان، علی‌اکبر؛ منصوری، بابک؛ میرباقری، بابک؛ کربلایی، فریبا (1392). «آشکارسازی ساختمان‌های تخریب‌شده بر اثر زلزله در مدت زمان کوتاه با استفاده از تصاویر ماهواره‌ای با قدرت تفکیک بسیار بالا». کنفرانس بین‌المللی عمران، معماری و توسعة پایدار شهری.
[7].       منصوری، بابک؛ مصطفی‌زاده، مونا السادات (1394). «توسعة روشی شیءگرا جهت تشخیص ساختمان‌ها و برآورد میزان تخریب به روش شبکة عصبی مصنوعی توسط تصاویر VHR». هفتمین کنفرانس بین‌المللی زلزله‌شناسی و مهندسی زلزله، 28 تا 31 اردیبهشت 1394.
[8].  Jawak, S. D.; Raut, D. A.; Luis, A. J. (2015). “Iterative spectral index ratio exploration for object-based image analysis of Antarctic coastal oasis using high resolution satellite remote sensing data”, Aquatic Procedia, 4: 157-164.‌
[9].  Blaschke, T. (2003, October). “Object-based contextual image classification built on image segmentation”, In Advances in Techniques for Analysis of Remotely Sensed Data, 2003 IEEE Workshop on: 113-119. IEEE.‌
[10].            Blaschke, T. (2010). “Object based image analysis for remote sensing”. ISPRS journal of photogrammetry and remote sensing, 65(1): 2-16.
[11].            Bouziani, M.; Goita, K; He, D-C. (2010). “Rule-Based Classification of a Very High Resolution Image in an Urban Environment Using Multispectral Segmentation Guided by Cartographic Data”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 8: 3198-3211.
[12].            Dell'Acqua, F.; Gamba, P. (2012). “Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives”, Proceedings of the IEEE, 100(10): 2876-2890
[13].            Dong, L.; Shan,J. (2013). “A comprehensive review of earthquake-induced building damage detection with remote sensing techniques”, ISPRS Journal of Photogrammetry and Remote Sensing, 84: 85–99.
[14].            Duan, F.; Gong, H.; Zhao, W. (2010). “Collapsed Houses Automatic Identification Based on Texture Changes of Post-earthquake Aerial Remote Sensing Image”, In:18th International Conference on Geoinformatics.
[15].            Duarte, D.; Nex, F.; Kerle, N.; Vosselmana, G. (2017). “Towards a More Efficient Detection of Earthquake Induced FAÇADE Damages Using Oblique Uav Imagery”, ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: 93-100
[16].            Feizizadeh, B.; Blaschke, T.; Tiede, D.; Moghaddam, M. H. R. (2017). “Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes”, Geomorphology.
[17].            Gerke, M.; Kerle, N. (2011). “Automatic structural seismic damage assessment with airborne oblique pictometry imagery”, Photogrammetric Engineering and Remote Sensing, 77 (9): 885–898.
[18].            Janalipour, M.; Mohammadzadeh, A. (2017). “A Fuzzy-GA Based Decision Making System for Detecting Damaged Buildings from High-Spatial Resolution Optical Images”, Remote Sensing, 9(4), 349.‌
[19].            Li, P.; Xu, H.; Liu, Sh.; Guo, J. (2009). “Urban building damage detection from very high resolution imagery using one-class SVM and spatial relations”, IEEE International Geoscience and Remote Sensing Symposium, vol. 1–5: 3537–3539.
[20].            Ma, J.; Qin,S. (2012). “Automatic depicting algorithm of earthquake collapsed buildings with airborne high resolution image”, IEEE International Geoscience and Remote Sensing Symposium: 939–942.
[21].            Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; ... Chen, D. (2017). “Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers”, ISPRS International Journal of Geo-Information, 6(2), 51.‌
[22].            Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. (2017). “A review of supervised object-based land-cover image classification”. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 277-293.‌
[23].            Menderes, A.; Arzu Erener, A.; Sarp, G. (2015). “Automatic Detection of Damaged Buildings after Earthquake Hazard by Using Remote Sensing and Information Technologies” , Procedia Earth and Planetary Science, 15: 257 – 262.
[24].            Razzaghi, M. S.; Ghafory-Ashtiany, M. (2012). “A preliminary reconnaissance report on August 11th, 2012, Varzaghan-Ahar twin earthquakes in NW of Iran”, Report of International Association of Seismology and Physics of the Earth’s Interior.
[25].            Rezaeian, M. (2012). “Automatic Classification of Collapsed Buildings using Stereo Aerial Images”, International Journal of Computer Applications (0975 – 8887), Volume 46– No.21.
[26].            Sarp G.; Erener A.; Duzgun S.; Sahin K. (2014). “An approach for detection of buildings and changes in buildings using orthophotos and point clouds: A case study of Van Erci earthquake”, European Journal of Remote Sensing - 2014, 47: 627-642.
[27].            Sharma, R. C.; Tateishi, R.; Hara, K.; Nguyen, H. T. Gharechelou, S.; Nguyen, L. V. (2017). “Earthquake damage visualization (EDV) technique for the rapid detection of earthquake-induced damages using SAR data”. Sensors, 17(2), 235.‌
[28].            Singhal, Sh.; Radhika, S. (2014). “Automatic Detection of Buildings from Aerial Images Using Color Invariant Features and Canny Edge Detection”, In: International Journal of Engineering Trends and Technology (IJETT) – Volume 11, Number 8 - May 2014.
[29].            Thuy Vu. T.; Matsuoka. M.; Yamazaki. F. (2005). “Preliminary results in development of an object-based image analysis method for earthquake damage assessment”, Proc. of 3rd International workshop Remote Sensing for Post-Disaster Response, Chiba, Japan.
[30].            Tong, X.; Hong, Z.; Liu, Sh.; Zhang, X.; Xie, H.; Li, Z.; Yang, S.; Wang, W.; Bao, F.(2012). “Building-damage detection using pre- and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake”. ISPRS Journal of Photogrammetry and Remote Sensing, 68: 13–27.
[31].            Tong. X.; Lin. X.; Feng. T.; Xie. H.; Liu. S.; Hong. Z.; Chen. P. (2013). “Use of shadows for detection of earthquake-induced collapsed buildings in high-resolution satellite imagery”, ISPRS Journal of Photogrammetry and Remote Sensing 79, 53–67.
[32].            Wang, J.; Zhou, W.; Qian, Y.; Li, W.; Han, L. (2017). “Quantifying and characterizing the dynamics of urban greenspace at the patch level: A new approach using object-based image analysis”, Remote Sensing of Environment.‌
[33].            Yamazaki, F.; Iwasaki, Y.; Liu, W.; Nonaka, T.; Sasagawa, T. (2013).” Detection of damage to building side-walls in the 2011 Tohoku, Japan earthquake using high-resolution TerraSAR-X images, Image and Signal Processing for Remote Sensing XIX”, 17 October 2013, Published in SPIE Proceedings Vol. 8892.