The Trend of Sea Level Pressure Changes in Iran with Emphasis on Climate Hazards

Document Type : Research Article


1 PhD of Climatology, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran

2 Master of Geography, Islamic Azad University, Rasht, Member of the club of young researchers and young elite of the Islamic Azad University of Chalus


The occurrence of climatic hazards is one of the main characteristics of the climate of Iran, which it always has economic, social, and financial losses. Undoubtedly, the first step in reducing the climate impact of the country is to identify the causes of these hazards. Sea level pressure is one of the most important climatic elements that can affect important climatic factors such as temperature, rainfall and wind that cause climate hazards. Increase or decrease severity and the expansion of the eastern and northern levels of sea level pressure centers is one of major determinants of dry and humid periods in Iran. The study of published works and resources shows that a comprehensive study is required on changes in Iranian sea surface pressure in different seasons. Therefore, the purpose of this study is to reveal the trend of sea level pressure changes in different seasons. For this purpose, sea level data with NC format at 12 GMT Obtained from the NCEP / NCAR database from 1948 to 2016. Afterward, to obtain the seasonal categorization and mapping, the next steps were converted to TXT, Matlab, EXCEL, and GIS formats. Then, long-term changes in sea surface pressure were revealed. Study of time series trend diagram as well as values of mean, average, minimum, and average of maximum sea level pressure with the Mann Kendall test in different seasons showed that the level of significance level in all cases is smaller than 0.05, and the average annual pressure level of the Iranian sea has a significant upward trend, which is increasing by 0.047 hpa per year. The average 10-year map of Iran's surface pressure was similar in different seasons, and the average pressure dropped from the north of Iran to the south. Anomalous maps of the mean of ten years of sea-surface pressure showed that anomalous amounts have reached their highest positive levels in recent decades. Considering the importance of the issue and the vulnerability of the country to environmental hazards, it is clear that climate risk management will have a higher chance of success and credibility with increasing sea-level pressure.


[1]. احمدی حجت، معصومه؛ احمدی گیوی، فرهنگ؛ و؛ حجام، سهراب (1392). فرهنگ. بررسی روند تغییرات پرفشار سیبری و تأثیر آن بر میدان‌های هواشناختی در بازه زمانی 1948 تا 2008، مجلة فیزیک زمین و فضا، دورۀ 39، ش 2، ص 138-127.
[2]. آرنس، سی. دونالد (1391). هواشناسی نوین، ترجمۀ محمدرضا بابایی، تهران: آییژ.
[3]. اسمیت، کیت (1390). مخاطرات محیطی، ترجمۀ ابراهیم مقیمی و شاپور گودرزی‌نژاد، تهران: سمت.
[4]. رضییی، طیب؛ مفیدی، عباس؛ و زرین، آذر (1388). «مراکز فعالیت و الگوهای گردش جو زمستانۀ تراز 500 هکتوپاسکال روی خاورمیانه و ارتباط آنها با بارش ایران»، مجلة فیزیک زمین و فضا، دورۀ 35، ش 1، ص 141-121.
[5]. حجازی‌زاده، زهرا (1372). بررسی سینوپتیکی نوسانات فشار زیاد جنب حاره، رسالۀ دکتری جغرافیای طبیعی، دانشگاه تربیت مدرس.
[6]. علی‌پور، یوسف (1395). بررسی تغییرات پرفشار جنب حارۀ تراز 500 هکتوپاسکال نیوار ایران، استاد راهنما زهرا حجازی‌زاده، رسالة دکتری آب‌‌وهواشناسی، دانشگاه خوارزمی، گروه جغرافیا.
[7]. فرج‌زاده، منوچهر (1392). مخاطرات اقلیمی ایران، تهران: سمت.
[8]. قویدل رحیمی، یوسف (1389). نگاشت و تفسیر سینوپتیک اقلیم با استفاده از نرم‌افزار گردس، تهران: سها دانش.
[9]. کاویانی، محمدرضا؛ و علیجانی، بهلول (1395). مبانی آبوهواشناسی، چ 19، تهران: سمت.
[10]. محمدی‌، حسین (1387). مخاطرات جوی، انتشارات دانشگاه تهران.
[11]. مقیمی، ابراهیم (1396). «چرا دانش مخاطرات (‌مخاطره‌شناسی امری فطری است)؟»، مجلۀ مدیریت مخاطرات محیطی، دورة 4، ش 1، ص 7-1.
[12]. مقیمی، ابراهیم (1393). دانش مخاطرات (برای زندگی با کیفیت بهتر و محیط پایدارتر)، تهران: انتشارات دانشگاه تهران.
[13]. یارنال، برنت (1385). اقلیم‌شناسی همدید و کاربرد آن در مطالعات محیطی، ترجمۀ سید ابوالفضل مسعودیان. اصفهان: انتشارات دانشگاه اصفهان.
[14]. Barry, R.G and Carleton, A.M. )2001(. Synoptic and Dynamic Climatology. Routledge, PP386.
[15]. Casty, C., Handorf, D., Raible, C.C., Gonzaález-Rouco, J.F., Weisheimer, A., Xoplaki, E., Luterbacher, J., Dethloff, K., Wanner, H., 2005, Recurrent Climate Winter Regimes in Reconstructed and Modeled 500 hPaGeopotential Height Fields over the North Atlantic-European Sector 1659– 1990, Climate Dynamics, Vol. 7-8, No. 24, PP. 809–822.
[16]. Gillett, N. P., Zwiers, F. W., Weaver, A. J. and Stott, P.A. 2003, Detection of Human Influence on Sea-level Pressure, Nature, Vol. 40, No. 422, PP. 292– 294.
[17]. Gong, D.Y. and Ho, C. H., 2002, The Siberian High and Climate Change over Middle to High Latitude Asia, Theoretical and Applied Climatology, Vol. 17, No.72, PP. 1-19.
[18]. Hoerling, M. P., Hurrell, J. W. and Xu, T., 2001, Tropical Origin for Recent North Atlantic Climate Change, Science, Vol. 5514, No. 292, PP. 90-92.
[19]. Hu, Y., and Q. Fu., 2007, Observed Poleward Expansion of the Hadley Circulation Since 1979, Atmospheric Chemistry and Physics, Vol. 7, PP. 5229–5236.
[20]. Lu, J., C. Deser, and T. Reichler., 2009, Cause of the widening of the tropical belt since 1958, Geophys Research. Letters, 36, L03803, DOI:10.1029/ 2008GL036076.
[21]. Marshall, G.J. 2002.Trends in Antarctic Geopotential Height and Temperature: A Comparison between Radiosonde and NCEP–NCAR Reanalysis Data, Journal of Climate, Vol.15, No. 6, PP. 659-674.
[22]. Panagiotopoulos, F., Shahgedanova, M. and Stephenson, D., 2005, Observed Trend and Teleconections of the Siberian High: A Recently Declining Center of Action, Journal of climate, Vol.18, No.2, PP.1411-1422.
[23]. Raible, C.C., Stocker, T.F., Yoshimori, M., Renold, M., Beyerle, U., Casty, C. and Luterbacher, J.2005, Northern Hemispheric Trends of Pressure Indices and Atmospheric Circulation Patterns in Observations,Reconstructions, and Coupled GCM Simulations. Journal of Climate, Vol. 19, No.18, PP. 3968–3982.
[24]. Reichler, Thomas., 2009, Climate Change: Observed impacts on Planet Earth, published by Elsevier, The Netherlands. PP. 149.
[25]. Seidel, D. J., Fu, Q., Randel, W. J. and Reichler, T. J., 2008, Widening of the Tropical Belt in a Changing Climate, Nature Geosci, Vol. 1, No. 1, PP. 21–24.
[26]. Shindell, D.T., Miller, R.L., Schmidt, G.A and Pandolfo, L., 1999, Simulation of Recent Northern Winter Climate Trends by Greenhouse-gas Forcing, Nature, Vol. 6735, No. 399, PP. 452-455.
[27]. Thompson, D. W. J., Wallace, J. M. and Hegerl, G. C., 2000, Annular Modes in the Extratropical Circulation, Part II: Trends, J. Clim., Vol. 5, No. 13, PP. 1018-1036.
[28]. Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai., 2007, Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basi, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Publishing, Cambridge, United Kingdom and New York, NY, USA.