Application of Morphotectonic Indices in Landslide Hazard Evaluation of Lorestan Railway

Document Type : Applied Article


1 PhD Student of Geomorphology, Shahid Beheshti University

2 Professor of Geomorphology, Shahid Beheshti University

3 Assistant Professor of Tectonic geology, Shahid Beheshti University


Landslides are among the natural hazards that cause the greatest damage to vital transportation networks, including rail lines, and after the events such as the departure of the train from the rails and the destruction of the infrastructure, they have the most financial losses dedicated. This factor has always caused the problem of the operation of the rail transport system and reduced the reliability of its customers. Therefore, the identification of predisposing factors, and areas with potential landslide hazard can help to secure and reduce the risks posed by this phenomenon. In addition to lithology, morphology and climatic conditions, the tectonic activity and seismicity are considered as one of the most important triggering factors of landslides. In this regard, a large number of studies were conducted around the world indicated that landslides occur frequently in tectonically active areas. In fact, many geomorphologic landforms are very sensitive to active tectonic movements and change concurrent with them. Thus, recognizing the tectonic characteristics of a region contributes to a better understanding of geomorphic processes. The Lorestan Railway is part of the north-south railway of Iran that is 215 km long. It extends from the Momenabad Station in Markazi province to the Tang-e-Haft Station in Khuzestan province and goes across high Zagros Mountains located in the geographical coordinates of 48°, 15' to 49°, 05 ' E, and the latitudes of 32°, 25' to 33°, 30' N. This region has specific characteristics in terms of slope instability and related geomorphological phenomena due to local and region al characteristic of the active Zagros orogenic belt.
Materials and Method
The data of this research included topographic maps with 1: 25000 scale received from the National Cartographic Center, 30 meters’ digital elevation model (DEM) achieved from USGS, geological map of 1: 1000000 scale of Lorestan province, field survey from the studied area in 2019, and 35 samples have been taken. The research methodology includes tectonic indicators that show the region's activity in terms of tectonics and the correlation between the occurrence of landslide phenomena, and tectonic activity. The tectonic indices used include the hypersonic and integral hysterometric (HI) curves, drainage asymmetry (AF), topographic symmetry (T), stream length gradient (SL), valley floor width-valley height ratio (VF) The V ratio index and basin shape index (BS) are calculated for each sub-basin. The classification of the indices was also carried out according to Hamdoni et al. Classification. The land status of the region was determined using the tectonic activity (lat) partial evaluation index. Then, the indices were standardized by Z-score method due to lack of homogeneity in the scale. A quantitative relationship between observed slides and tectonic indices in sub-basins was calculated by analysis of variance.
The activity of the sub-basins was tectonically investigated using the Iat index. According to the classification of Hamdoni et al., ​​the study area, were divided into three tectonic activity classes (3-2-1). The number 1 represents the highest neo-tectonic activity, and the number 2 is neo-tectonic, semi-active and moderate, and the number 3 is low and inactive. According to the results obtained from this indicator, in basin number 12, 3 ,1 the tectonic activity is high and in the rest of the basins, tectonic activity is high to moderate. In the basins above the 3rd index, field observations with slip samples are not found. According to field observations, more than 80 percent of the total landslide in the region between the Dorood to Tang-7 stations lies in the range of tectonic activity to a large extent, which indicates the effect of land-based construction on the frequency of landslides in the area. Most field observations have been observed around railways in basins 12 and 5, while field observations are considered in basins 12.3 and 5, which can be concluded that the construction of railroad slopes and slopes of the Slide potential range in Basin 5 has increased and the condition of crossing the railways of Basin 3 is more appropriate. The basin covers 12 major parts of the Cham - sengr station - the country and the basin - covering a large part of the Qaron-Bizeh stations that are also involved with the flood issue every year. Variance analysis was used to establish a quantitative relationship between the observed landslides and tectonic indices in the sub basins. Due to the lack of homogeneity of the indices in the number range, the Z scale was standardized and to establish a relationship between indices and perceptions you know, its linear regression model was calculated.
The results of this study showed that the studied area is young in terms of neotectonics activity, but the activity level is not the same in all places, so that basins number 12, 3 and 1 have the highest tectonic activity, and basins number 13, 11, 10 and 9 have relatively less activity. The maximum landslide occurrence has been observed around railways in the 12th and 5th basins, but field surveys have shown more specimens in the 12.3 and 5 basins, which may have increased rail slots and slopes in the basin area 5 And the railways in the basin 3 have better conditions. In general, based on the morphological indices, field evidence and the regression model of the slide and tectonic relationship, it is suggested that sufficient attention be paid to the slopes and ditches.


  1. آمبرسیز، نیکولاس؛ و ملویل، چارلز پیتر (1370). تاریخ زمین‌لرزه‌های‌ ایران، ترجمۀ ابوالحسن رده، تهران: آگاه.
  2. اجل‌لوئیان، رسول؛ زراعی سهامیه، رضا؛ بهاروند، سیامک؛ و فرهادی‌نژاد، طاهر (1382). «پهنه‌بندی خطر زمین‌لغزش در حوزۀ نوژیان (جنوب شرق خرم‌آباد- استان لرستان)»، مجلۀ زمین‌شناسی مهندسی، ج اول، ش 2، ص 119.
  3. بیاتی خطیبی؛ و رجبی، مریم (1388). «تشخیص فعالیت‌های نئوتکتونیکی در حوضۀ قرنقوچای در دامنه‌های شرقی سهند با استفاده از شاخص مورفوتکتونیک»، نشریۀ فضای جغرافیایی، ش 25، ص 50-23.
  4. بیرانوند، حجت‌اله؛ انتظاری، مژگان؛ و سیف، عبداله (1395). «برآورد شاخص‌های مورفومتری زمین‌لغزش کبیرکوه»، نشریۀ تحقیقات کاربردی علوم جغرافیایی، سال شانزدهم، ش 41.
  5. جباری، ندا؛ ثروتی، محمدرضا؛ و حسین‌زاده، محمد‌مهدی (1391). «مطالعۀ مورفوتکتونیک فعال حوضۀ حصارک کرج (شمال باختر تهران) با استفاده از شاخص‌های مورفومتریک»، پژوهش‌های ژئومورفولوژی کمّی، ش 2.
  6. حسنی، حسین (1387). روش‌های نوین مدیریت ترانشه‌ها در راه و راه‌آهن، انتشارات جهاد دانشگاهی دانشگاه صنعتی امیرکبیر.
  7. روستایی، شهرام؛ رجبی، معصومه؛ و سمندر، نسرین (1394). «بررسی نقش عوامل مؤثر در تحول ژئومورفولوژی مخروط‌افکنه و بستر اسکوچای»، هیدروژئومورفولوژی، ش 2، ص 60-41.
  8. زارع، مهدی (1393). «کیفیت واکنش به زمین‌لرزۀ وان ترکیه با بزرگای 2/7: اول آبان 1390 برای کاهش مخاطرات»، دانش مخاطرات، دورۀ 1، ش 2، ص 202-189.
  9. سلیمانی، شهریار (1378). رهنمودهایی در شناسایی حرکات تکتونیکی فعال و جوان با نگرشی بر مقدمات دیرینه لرزهشناسی، مؤسسۀ بین‌المللی زلزله‌شناسی و مهندسی زلزله.
  10. سوری، سلمان؛ لشکری‌پور، غلامرضا؛ غفوری، محمد؛ و فرهادی‌نژاد، طاهر (1390). «پهنه‌بندی خطر زمین‌لغزش با استفاده از شبکۀ مصنوعی؛ مطالعۀ موردی حوضۀ کشوری (نوژیان)»، نشریۀ زمین‌شناسی مهندسی، سال پنجم، ش 2، ص 1286-1269.
  11. صمدی مقدم، رعنا؛ ده‌بزرگی، مریم؛ نورزعیم، رضا؛ و محجل، محمد (1395). «ارزیابی نئوتکتونیک گسل کلمرد با استفاده از GIS، منطقۀ شیرگشت (ایران مرکزی)»، جغرافیا و توسعه، ش 45، ص 180-159.
  12. کرمی، فریبا؛ رجبی، معصومه؛ و عسگری، مریم (1392). «تحلیل فعالیت‌های نئوتکتونیکی دامنۀ شمالی رشته‌کوه بزقوش با استفاده از روش‌های ژئومورفولوژیکی»، فصلنامۀ تحقیقات جغرافیایی، سال 28، ش دوم، شمارۀ پیاپی 109، ص 158-141.
  13. ملکی راد، زینب (1390). پهنه‌بندی خطر زمین‌لرزه با استفاده از داده‌های ماهواره‌ای در استان لرستان، پایان‌‌نامۀ کارشناسی ارشد دانشگاه آزاد اسلامی، واحد تهران شمال.
  14. مقیمی، ابراهیم؛ جعفربیگلو، منصور؛ مقصودی، مهران؛ مونیر، نولبرتو؛ و احمدی، امیر (1397). «تأثیر مخاطرات ژئومورفیک آبراهه‌ای بر خطوط انتقال انرژی با استفاده از محور ریسک خط لولۀ گاز نهم سراسری»، مدیریت مخاطرات محیطی، دورۀ 5، ش 2، ص 216-199.
  15. همتی، فریبا؛ مختاری، داود؛ روستائی، شهرام؛ و زمانی قره‌چمنی، بهزاد (2017). «ارزیابی فعالیت‌های نئوتکتونیکی محدودۀ گسل بناروان براساس شاخصه‌های ریخت‌سنجی»، جغرافیا و مخاطرات محیطی، 6(3)، ص 107-85.


  1. Anoop, Ambili; Prasad, Sushma; Basavaiah, Nathani; Brauer, Achim; Shahzad, Faisal; & Deenadayalan, Karen. (2012). “Tectonic versus climate influence on landscape evolution: a case study from the upper Spiti valley, NW Himalaya”, Geomorphology, 145–146, pp: 32–44.
  2. Ayalew, Lulseged & Hiromitsu,Yamagishi . (2005). “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan”. Geomorphology 65(1/2), pp: 15–31
  3. Berberian, Manuel. (1981). “Active faulting and tectonics of Iran. In: Delany, F.M. (Ed.), Zagros, Hindu Kush and Himalaya Geodynamic Evolution, Geodynamics Series”. American Geophysical Union, Washington, DC, pp: 33–69.
  4. Brand, Edward. Wiliam. (1984). “Landslides in Southeast Asia: A state-of-the-art report”. In Proceedings of the 4 international Symposium on Landslides, Vol. 1, Toronto, pp: 17–59.
  5. Bull, Wiliam.B.  & McFadden, Leslie D. (1977). “Tectonic geomorphology north and south of the Garlock fault”. Proceedings of the 8th Annual Geomorphology Symposium, Binghamton, State University of New York.
    1. Burbank, Douglas & Anderson, Rabert. (2011). “Tectonic geomorphology”. John Wiley & Sons 480 pp.
  6. Cancelli, Andrea & Nova, Roberto (1985). “Landslide in soil debris cover triggered by rain storm in Valtellina (Central Alps, Italy)” pp: 267-272, Proceeding of the IV International conference on Landslide, Tokyo, Rotterdam.
  7. Dehbozorgi, Maryam; Pourkermani, Mohsen; Arian, Mehran & Hoseini, Amin. (2010). “Quantitative Analysis of Relative Tectonic Activity in the Sarvestan Area central Zagros, Iran”. Geomorphology, 121T pp: 329-341.
  8. El Hamdouni, Rashid; Irigaray, Clemente; Fernandez, Tomas; Chacon, José. & Keller, Edward L. (2008). “Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain)”. Geomorphology 96, pp: 150-173. doi: 10.1016/j.geomorph.2007.08.004.
  9. Font, Yvonne & Lallemand, Sergi (2009). “Subducting oceanic high causes compressional faulting in southernmost Ryukyu forearc a revealed by hypocentral determinations of earthquakes and reflection/refraction seismic data”, Tectonophysics, 466(3–4), pp: 255–267.



Gloaguen, Richard; Marpu, Prashant R. & Niemeyer, Irmgard (2007). “Automatic extraction of Faults and Fractal analysis from remote sensing date”, Nonlinear processes Geophys,14, pp: 131-138.

  1. Guarnieri, Pierpaolo & Pirrotta,Claudia (2008). “The response of drainage basins to the late Quaternary tectonic in the Sicillian side of the Messina Strait (NE Sicily)”, Geomorphology,95, pp: 260-273.
  2. Hancock, Paul.L. (1994). “continental deformation” Pergamon Peress-oxford.
  3. Karami, Fariba (2009).” Geomorphic assessment of the tectonic activity in the drainage basin saydabad chay ”. Physical Geography research, 69, pp: 67-82.
  4. Keller, Edward A. & Pinter, Nicholas ( 2002). “Active Tectonics: Earthquakes, Uplift and Landscape”. New jersey, Prentice Hall.
  5. Morgan, Benjamin A.; Wieczorek, Gerald F.; Campbell, Roy H.; & Gori P.H. (1997). “Debris flow hazards in areas affected by the June 27, 1995 storm in Madison County, Virginia”, U.S. Geological Survey Open-file Report 97-438, 15p., 2 tables, 2 plates, scale 1: 24,000.
  6. Pérez-Peña, Jose Vicente; Azañón, José Miguel & Azor, Antonio (2009). “CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments Applications to drainage basin analysis in SE Spain”. Comput. Geosci. 35 (6), pp: 1214–1223.
  7. Reyaz Ahmad Dar; Shakil Ahmad Romshoo; Rakesh Chandra & Ishtiaq Ahmad (2014). “Tectonogeomorphic study of the karewa basin of Kashmir valley”, journal of Asian earth science, pp: 143-156.
  8. Schoenbohm, Lindsay M; Whipple, Kelin X.; Burchfiel, Benjamin C. & Chen, Lieping (2004). “Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China”. Geol. Soc. Am. Bull. 116 (7), 895.
  9. Shahzad, Faisal & Gloaguen, Richard (2011). “TecDEM: a MATLAB based toolbox for tectonic geomorphology, Part 1: drainage network preprocessing and stream profile analysis”. Comput. Geosci. 37 (2), pp: 250–260.
  10. Siva,Pablo, G.; Goy, José Luis; Zazo, Caridad  & Bardji, Teresa (2003). “Fault generated mountain front in south east spain: geomorphologic assessment of tectonic and seismic activity”. Geomorphology 50, pp:225-203.
  11. Snyder, Noah P.; Whipple, KelinX.; Tucker, Gregory E. & Merritts, Dorothy J. (2000). “Landscape response to tectonicforcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California”. Geol. Soc. Am. Bull. 112 (8), pp: 1250–1263.
  12. Strahler, Arthur (1957). “Quantitative analysis of watershed geomorphology”. Defense Technical Information Center, pp: 913–920.
  13. Vojtko, Rastislav; Petro, Ľubomír; Benova, Alexandr; Bona, Jan & Hock, Jozef (2012). “Neotectonic Evolution of Northen Laborec Drainage”. geomorphology. Volume 138, Issue 1, February 2012, Pages 276-294.
  14. Wobus, Cameron; Whipple, Kelin X.; Kirby, Eric; Snyder, Noah; Johnson, Joel; Spyropolou, Katerina; Crosby, Benjamin. & Sheehan, Daniel (2006). “Tectonics from topography: procedures, promise, and pitfalls. Geol”. Soc. Am. Spec. Pap. 398, pp: 55–74.