Reducing the Flood Hazard Zone in the Kashan Plain Watershed through the Implementation of the Risk Land use Planning Scenario

Document Type : Applied Article

Authors

1 Phd. Student, Faculty of Humanities, University of Lorestan, Khorramabad, Iran

2 Associate Professor, Faculty of Humanities, University of Lorestan, Khorramabad, Iran

3 Professor, Faculty of Range land & watershed management, University of Gorgan, Gorgan, Iran

4 Associate Professor, Faculty of Geography, University of Tehran, Tehran, Iran

Abstract

Introduction
The plains of flood rivers are among the critical points of the flood. The Kashan Plain Watershed is one of the cases that has been flooded in numerous years. There has been many economic and financial losses in the residents of this watershed. Achieving and resolving environmental management problems in the watershed scale requires an integrated approach in evaluation and management, in which the processes and all the biophysical and socio-economic effects are considered (1). In the last decade, in a comprehensive action with a subtle and flexible combination of empirical models of evaluation of capabilities, the environmental and legal support of some pioneering countries with the approval of the law required the interference of natural disasters in the context of each development program. The new horizon of the Risk land use planning paradigm was opened, and logistic link to the efficiency of the programs and realization of the multilateral goals of sustainable development, and management of its environmental hazards was accelerated drastically (2).
In recent years, several researches in the field of Flood Risk Zoning (3,4), Impact of Land Use Change on Flood Risk Area (5,6,7,8) and Effect of Intensive Use Scenario on Flood Risk Area are presented. In this study, the risk zone of flood in watershed was determined, and the new risk land use planning approach were presented based on the uses of 1985 and 2017 as a management scenario for improving the watershed.
Materials and Methods
Study Area
Kashan Plain Watershed has an area equal to 5574 square kilometers. It is located south of Qom Plain, and Salt Lake, and south west of the mountains of Vulture, and east of sand dunes of The High-Rise rig of Kashan. The climate of the study area is classified according to the Domarten method in the lowland areas except the arid or desert climate, and in the highland areas except the semi-arid climate.
Research Methodology
Effective parameters in flood hazard zoning
There are various factors that can be effective on floods based on available data from the region; 11 effective slope percentage, elevation classes, lithological units, fault distance, distance from waterways, soil type, Stream Power Index (SPI), Topographic Wetness Index (TWI), Ground Curvature, Land Use, and Rainfall, which were selected for 1985 and 2017. Afterward, their raster maps were prepared with 30 * 30 cell dimensions.
Modeling Flood Hazard using EBF Model
The obtained weights were applied to the relevant layers. Then, using the mapping functions, the final map of flood hazard zonation was obtained.
Model Validation
A set of technical validation points (64 points, 30% of the total points) were used to validate the flood risk forecast map. The flood points were overlapped with the final map using a GIS software.
Risk Land Use Planning
In preparation of the Risk Land Use Planning, the standardization was conducted based on two fuzzy logic (0TH1) for Criteria and Boolean (0 or 1) for limitations. In the next step, the criteria and limitations were weighted according to their importance and their impact on selecting appropriate location using Analytical Hierarchy Process (AHP) method. Further, the procedure was performed by evaluation of power for 8 uses of forestry, rangeland, agriculture, aquaculture, extensive tourism, centralized tourism conservation, and rural development by combining information layers (criteria) with Weighted Linear Combination (WLC) (8).
Discussion
Flood Hazard Zoning
Finally, to prepare the flood potential map in the study area, eleven maps resulted from the GIS environment were used. The final map was classified in four different areas of potential, including low, medium, high, and very high potential zones. The results showed that from 1985 to 2017, the area of low and middle class decreased by 5.8% and 4.07%, respectively, and increased by 2.22% and 2.543% respectively. The study of Goodarzi and Fatehifar (1398) corresponds to the Azarshahr Tea watershed.
Risk Land Use Planning Map
Based on the 1985 and 2017 flood hazard maps, the high and very high floodplains cover most of the catchment area. This indicates the need to prioritize conservation use in the risk management scenario.
Conclusion
In this study, the probability map of flood risk was prepared for both 1985 and 2017 land use. Then, in order to manage the flood risk, the new approach of risk land use planning was introduced. The results show that despite decreasing rainfall from 1985 to 2017, the floods during this period especially increase around Kashan, Aran, Bidgol, and surrounding villages. This concludes that climate change adaptation-based disaster management; containment of illegal land use change in risk land use planning of Kashan Plain Watershed for sustainable development. According to the results, more dire conditions will prevail in the region in the future. Therefore, it is recommended that organizations consider strategic flood prevention plans and prioritize risk planning.

Keywords


[1].       اونق، مجید (1388). «الزامات آمایشی مدیریت پایدار خطرات طبیعی در مقیاس آبخیز: یک مدل خطرمدار پیشنهادی»، پنجمین همایش ملی علوم و مهندسی آبخیزداری ایران (مدیریت پایدار بلایای طبیعی)»، دانشکدۀ علوم کشاورزی و منابع طبیعی گرگان. 3-2 اردیبهشت.
[2].              پریسای، زهرا؛ اونق، مجید؛ بردی شیخ، واحد؛ و بهره‌مند، عبدالرضا (1396). «ارزیابی اثر سناریوی کاربری آمایشی در خطر و خسارت سیل حوضۀ آبخیز سد بوستان»، مدیریت بحران، دورۀ 6، ش11: 143-133.
[3].       حسام، رسول؛ ضرابی، اصغر؛ و تقوایی، مسعود (1398). «پتانسیل‌سنجی خطر سیلاب شهری با رویکرد توسعۀ شهری ایمن (مطالعۀ موردی: شهر گنبد کاووس)»، مدیریت مخاطرات محیطی (دانش مخاطرات سابق)، 6(1)، ص 32-17.
[4].       دارابی، حمید؛ شاهدی، کاکا؛ و مردیان، مهدی (1395). «تهیۀ نقشه‌های خطر احتمال و حساسیت سیل با استفاده از روش نسبت فراوانی در حوزۀ آبخیز پل دوآب شازند»، نشریۀ علمی پژوهشی مهندسی و مدیریت آبخیز، جلد 8، ش 1، ص 79-68.
[5].       رجبی، محمدرضا؛ منصوریان، علی؛ طالعی، محمد (1390). مقایسة روش‌های تصمیم‌گیری چندمعیارۀ AHP، AHP_OWA و  Fuzzy AHP_ OWA برای مکان‌یابی مجتمع‌های مسکونی در شهر تبریز، محیط‌شناسی، سال 37، ش 57، ص 77-92.
[6].       سپهری، مهدی؛ ایلدرومی، علی‌رضا‌؛ فرخزاده، بهنوش؛ و نوری، حمید (۱۳۹۴). «ارزیابی ریسک سیل در شهر تاریخی همدان، کنفرانس بین المللی دستاوردهای نوین پژوهشی در مهندسی عمران، معماری و شهرسازی»، تهران - مؤسسۀ آموزش عالی نیکان، دانشگاه تهران.
[7].       سعدالدین، امیر (1388). تجزیه‌وتحلیل سناریوهای: مدیریتی یک پروتوتیپ سیستم پشتیبان تصمیم شبکه‌های بیزین برای مدیریت شوری. پنجمین همایش ملی علوم مهندسی منابع آبخیزداری ایران (مدیریت پایدار بلایای طبیعی)، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 12-3 اردیبهشت.
[8].       کرم، عبدالامیر (1383). «کاربرد مدل ترکیب خطی وزین (WLC) در پهنه‌بندی پتانسیل وقوع زمین‌لغزش. مطالعۀ موردی؛ منطقۀ سرخون در استان چهارمحال و بختیاری»، مجلۀ جغرافیا و توسعه، دورۀ 2، ش 4، ص 146-131.
[9].       گودرزی، محمدرضا؛ و فاتحی‌فر، آتیه (1398). «پهنه‌بندی خطر سیلاب در اثر تغییرات اقلیمی تحت سناریو RCP8.5 با استفاده از مدل هیدرولوژیکی SWAT در محیط GIS (حوضۀ آذرشهر‌چای)»، نشریۀ تحقیقات کاربردی علوم جغرافیایی، سال 19، ش 53، ص 117-99.
[10].      محمدی، شاهین؛ حبشی، خلیل؛ و پورمنافی، سعید (1397). «پایش و پیش‌بینی تغییرات کاربری/ پوشش اراضی و ارتباط آن با خشکسالی (مطالعۀ موردی: زیرحوزۀ پارسل B2، حوزۀ آبخیز زاینده‌رود)»، سنجش از دور و سامانۀ اطلاعات جغرافیایی در منابع طبیعی، دوره 9، ش 1، ص 39-24.
[11].           مزیدی، مریم؛ و خوش‌روش، مجتبی (1395). «تأثیر تغییر اقلیم بر فراوانی سیل حوضۀ گرگانرود با استفاده از آنالیز مرتبه اول مدل هیدرولوژیک بارش-رواناب»، نشریۀ پژوهش‌های کاربردی علوم آب، سال دوم، ش 2، ص 44-35.
[12].      نوحانی، ابراهیم؛ معروفی‌نیا، ادریس؛ و خسروی، خه‌بات (1396). پتانسیل‌یابی منابع آب زیرزمینی دشت الشتر توسط مدل تابع شواهد قطعی، نشریۀ آبیاری و زهکشی ایران، ش 4، ج 11، ص 707-698.
[13].            Glavovic, B. C; Saunders, W. S. A; Becker, J. S. (2010). “Land-use planning for natural hazards in New Zealand: the setting, barriers, ‘burning issues’ and priority actions”, Natural Hazards, 54(3), pp: 679-706.  https://doi.org/10.1007/s11069-009-9494-9
[14].            Khosravi, Khabat; Nohani, Ebrahim; Maroufinia, Edris; Prakash,Indra; & Tien Bu, Dieu (2016). “A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran”, Sience of the total environment,627,pp:744-755.      
[15].               Khosravi, Khabat; Nohani, Ebrahim; Maroufinia, Edris; & Pourghasemi, Hamid Reza (2016). “A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique”, Natural Hazards, 83(2), pp: 947–987.
[16].            Khosravi, Khabat.; Panahi, Mahdi.; BinAhmad, Baharin.; & Saro, Lee (2018). “Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms”, Sensors , 18, 2464, pp:1-20. doi:10.3390/s18082464
[17].            Lee, M.-J.; Kang, J.-E.; Jeon, S. (2012). “Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS”, 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp: 895–898.
[18].             Li, Zh.; Liu, W.zh.; Zhang, X.ch.; Li, Zh.; Liu, W.zh.; Zhang, X.ch.; & Li zheng, F. (2009). “Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China”, Journal of  Hydrology, 377(1-2), pp: 35-42.
[19].            LIU, Yue.; Cheng, Qiuming.; XIA, Qinglin.;Wang, Xinqing, Wang (2014). “The use of  evidential belief functions for mineral potential mapping in the Nanling belt, South China”, Front Earth Science, Vol 9, Issue 2:342–https://doi.org/10.1007/s11707-014-0465-4  
[20].            Malekian,Arash;  & Azarnivand, Ali. (2016). “Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran”, Water Resources Management, 30(1),pp:409-425. https://doi.org/10.1007/s11269-015-1169-6
[21].            Niehoff, D.; Fritsch, U.; Bronstert, A. (2002). “Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SWGermany”, Journal of Hydrology, 267(1-2), pp: 80-93
[22].            Rahmati, Omid; Pourghasemi,Hamid Reza; & Zeinivand,Hossein. (2016). “Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran”, Geocarto International, 31(1), pp:42-70. https://doi.org/10.1080/10106049.2015.1041559         
[23].            Rahmati,Omid;  Zeinivand, Hossein; & Besharat, Mosa . (2016). “Flood hazard zoning in Yasooj region, Iran,using GIS and multi-criteria decision analysis”,
[24].            Shafapour Tehrany M.; Shabani F.; Neamah Jebur M.; Hong H.; Chen, W.; & Xie, X. (2017). “GIS-  based spatial prediction of flood prone areas using standalone frequency ratio, logistic  regression, weight of evidence and their ensemble techniques”, Geomat Nat Hazard Risk, 8, pp:1538–1561.
[25].            Shi, Pei-Jun;Yuan, Yi; Zheng,Jing;Wang,Jing-Ai;Ge,Yi;  & Qiu,Guo-Yu. (2007). “The effect of  land use/cover change on surface runoff in Shenzhen region, China”, CATENA, 69(1), pp:31-35. https://doi.org/10.1016/j.catena.2006.04.015
[26].            Siahkamari, Safura; Haghizadeh, Ali; Zeinivand, Hossein; Tahmasebipour Naser; & Rahmati,Omid. (2018). “Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models”, Journal of Geocarto International,Vol33,Issue9, pp:927-941. https://doi.org/10.1080/10106049.2017. 1316780
[27].            Youssef, A.M.; Pradhan, B.; Pourghasemi, H.R.; & Abdullahi, S., (2015), “Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate  models in GIS”, Geosci. J. 19, 449.
[28].            Youssef, A.M.; Pradhan, B.; & Sefry, S.A. (2016). “Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ”, Earth Sci. 75, 12.