[1]. Ghazali, S.M.; Shaadan, N.; & Idrus, Z. (2020). "Missing data exploration in air quality data set using R-package data visualisation tools". Bulletin of Electrical Engineering and Informatics, 9(2), pp: 755-763. doi:https://doi.org/10.11591/eei.v9i2.2088.
[2]. Junger, W.; & De Leon, A.P. (2015). "Imputation of missing data in time series for air pollutants". Atmospheric Environment, 102, pp: 96-104. doi:https://doi.org/10.1016/j.atmosenv.2014.11.049.
[3]. Liu, X.; Wang, X.; Zou, L.; Xia, J.; & Pang, W. (2020). "Spatial imputation for air pollutants data sets via low rank matrix completion algorithm". Environment International, 139, pp: 105713. doi:https://doi.org/10.1016/j.envint.2020.105713.
[4]. Rombach, I.; Gray, A.M.; Jenkinson, C.; Murray, D.W.; & Rivero-Arias, O. (2018). "Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level". BMC medical research methodology, 18(1), pp: 87. doi:https://doi.org/10.1186/s12874-018-0542-6.
[5]. Shahbazi, H.; Karimi, S.; Hosseini, V.; Yazgi, D.; & Torbatian, S. (2018). "A novel regression imputation framework for Tehran air pollution monitoring network using outputs from WRF and CAMx models". Atmospheric Environment, 187, pp: 24-33. doi:https://doi.org/10.1016/j.atmosenv.2018.05.055