[1]. Aksoy, E. and San, B.T., 2019. Geographical information systems (GIS) and multi-criteria decision analysis (MCDA) integration for sustainable landfill site selection considering dynamic data source. Bulletin of Engineering Geology and the Environment, Vol.78, No.2, pp.779-791.
[2]. Al-shabeeb, A.R., 2016. The use of AHP within GIS in selecting potential sites for water harvesting sites in the Azraq Basin-Jordan. Journal of Geographic Information System, Vol.8, No.1, pp.73-88.
[3]. Alkhatib, A.A., 2014. A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, Vol.10, No.3, pp.1-12.
[4]. Bu, F. and Gharajeh, M.S., 2019. Intelligent and vision-based fire detection systems: A survey. Image and vision computing, Vol.91, pp.1-32.
[5]. Fuchs, S., Keiler, M. and Zischg, A., 2015. A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences, Vol.15, No.9, pp.2127-2142.
[6]. Gill, J. C., & Malamud, B. D. 2014. Reviewing and visualizing the interactions of natural hazards. Reviews of Geophysics, Vol.52, No.4, pp.680-722.
[7]. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, Vol.72, No.1-4, pp.272-299.
[8]. Jelokhani-Niaraki, M., & Malczewski, J. 2012. A user-centered multicriteria spatial decision analysis model for participatory decision making: An ontology-based approach. Proceedings of GSDI 13 Quebec City, pp.1-16.
[9]. Kourgialas, N. N., & Karatzas, G. P. 2017. A national scale flood hazard mapping methodology: The case of Greece–Protection and adaptation policy approaches. Science of The Total Environment, Vol.601, pp.441-452.
[10]. Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Stafford‐Smith, M. 2014. A compound event framework for understanding extreme impacts. Wiley Interdisciplinary Reviews: Climate Change, Vol.5, No.1, pp.113-128.
[11]. Malczewski, J., & Rinner, C. 2015. Multicriteria decision analysis in geographic information science: Springer.
[12]. Michielsen, A., Kalantari, Z., Lyon, S. W., & Liljegren, E. 2016. Predicting and communicating flood risk of transport infrastructure based on watershed characteristics. Journal of environmental management, Vol.182, pp.505-518.
[13]. Nachappa, T. G., Ghorbanzadeh, O., Gholamnia, K., & Blaschke, T. 2020a. Multi-hazard exposure mapping using machine learning for the state of salzburg, Austria. Remote Sensing, Vol.12, No.17, pp.1-24.
[14]. Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. 2020b. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology, Vol.590, pp.1-42.
[15]. Pham, B. T., Luu, C., Van Phong, T., Nguyen, H. D., Van Le, H., Tran, T. Q., Prakash, I. 2021. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. Journal of Hydrology, Vol.592, pp.1-50.
[16]. Pourghasemi, H. R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T., & Cerda, A. 2020. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Scientific reports, Vol.10, No.1, pp.1-11.
[17]. Pourghasemi, H. R., Mohammady, M., & Pradhan, B. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, Vol.97, pp.71-84
[18]. Rahmati, O., Yousefi, S., Kalantari, Z., Uuemaa, E., Teimurian, T., Keesstra, S., Tien Bui, D. 2019. Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sensing, Vol.11, No.16, pp.1-20.
[19]. Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., & Kawasaki, A. 2017. Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Natural Hazards, Vol.85, No.3, pp.1323-1346.
[20]. Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M. 2014. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, Vol.115, pp.55-70.
[21]. Tian, C.-s., Fang, Y.-p., Yang, L. E., & Zhang, C.-j. 2019. Spatial-temporal analysis of community resilience to multi-hazards in the Anning River basin, Southwest China. International Journal of Disaster Risk Reduction, Vol.39, pp.1-22.
[22]. Tilloy, A., Malamud, B. D., Winter, H., & Joly-Laugel, A. 2019. A review of quantification methodologies for multi-hazard interrelationships. Earth-Science Reviews, Vol.196, pp.1-55.
[23]. Yanar, T., Kocaman, S., & Gokceoglu, C. 2020. Use of Mamdani fuzzy algorithm for multi-hazard susceptibility assessment in a developing urban settlement (Mamak, Ankara, Turkey). ISPRS International Journal of Geo-Information, Vol.9, No.2, pp.1-25.
[24]. Yu, J., Qin, X., & Larsen, O. 2013. Joint Monte Carlo and possibilistic simulation for flood damage assessment. Stochastic environmental research and risk assessment, Vol.27, No.3, pp.725-735.