Effects of Plan Geometry and Twisting Architectural Form on the Seismic Vulnerability of Tall Buildings’ Non-structural Components (NSCs)

Document Type : Applied Article

Authors

1 Ph.D. Student, Department of Architecture, Tarbiat Modares University, Tehran, Iran

2 Professor, Department of Architecture, Tarbiat Modares University, Tehran, Iran

Abstract

Introduction
Earthquake is one of the most important risks in high seismic countries like Iran and, considering solutions to reduce the seismic vulnerability of buildings is one of priorities for designers, builders, and regulations in this area. Experiences of past earthquakes show that a significant part of the human injuries and financial loses is due to damage to NSCs in buildings - including architectural, mechanical and electrical components. Tall buildings are more important in reducing NSC’s seismic vulnerability due to their size, large number of residences and occupancies and the special characteristics of their structures. If earthquake happen,  even if it does not cause serious damage to the structural stability of tall buildings, any damage to their NSCs such as the facade, stairs, facilities, interior decoration, etc., in addition to the possibility of causing physical injuries and loss of life, It can leave significant costs for reconstruction. Managing these damages includes awareness, prevention and reduction of their vulnerability before the earthquake occurred and in the process of designing and constructing buildings.
Research Necessity
Tall buildings, due to their height and scale, have a considerable impact on the urban landscape, and for this reason, designers mostly like to use complex forms with complicated and impressive geometric in the design of these buildings. However, architectural forms play a major role in the seismic performance of tall buildings. This research explores the effect of the “Twisted forms” as a complex architectural form, with various plans and different heights on the seismic performance of tall buildings with steel diagrid structural system. The seismic performance indicators are drift and lateral displacement as indicators of measuring the vulnerability of NSCs and the weight per unit area of the structure as an indicator of the optimal structural design of buildings
Research Method
 This research is of a quantitative type and has been done by computer simulation and analysis method. For this purpose, first, the initial models with triangle, square, hexagon, and circle plans and with various heights including 160, 180, and 200 meters were made parametrically in Rhino software and the Grasshopper plugin. Then, twisted forms are made by twisting the floors of the primary models relative to each other by 1, 2, and 3 degrees. After that, the diagrid structural system has been designed for all of the architectural forms directly in the parametric design environment using the Karamba3D finite element analysis plugin. The linear static analysis for serviceability earthquake load has been used for designing and tuning the diagrid structures Finally, the seismic performance indicators including drift and lateral displacement as the indicators of measuring the vulnerability of NSCs and the weight per unit area of the structure as the indicator of the optimal structural design of tall buildings are extracted and analyzed using charts and tables.
Innovations and Results
The effects of simple various architectural forms on the seismic performance of tall buildings, have been studied in previous researches including taper, concave and convex forms. However, so far, complex forms have been less investigated. This research explores the effect of the “Twisting forms” as a complex architectural form, with various plans and different heights on the seismic performance of tall buildings with steel diagrid structural system. This issue has not been investigated in previous studies. The results show that in the diagrid structure with steel materials at the heights and plans investigated in this research, the twisting of the floors in the height increases the drift, lateral displacement, and weight per unit area of ​​the structure in the forms with triangular and quadrilateral plans in all 160,180 and 200 meters height. As a result, choosing these types of plans for twisting forms can reduce the lateral stability of tall buildings and increase the probability of damage to NSCs during an earthquake. On the other hand, by increasing the number of sides of the plan (forms with circular and hexagonal plans), the relative twist of the floors in terms of degrees (from zero to 3 degrees) has not cause significant changes in any of evaluated indicators. Resultantly, using plans with more sides for tall buildings with twisted forms would make it possible to avoid the adverse effects of twisting and to design optimal tall buildings from a seismic point of view.

Keywords


  • ابوالوردی (جاویدان‌نیا)، غزل. (1389). طراحی الگوی مسکن پایدار لرزه‌ای در بافت کهن تهران، پایان‌نامۀ ارشد به راهنمایی دکتر محمدجواد مهدوی‌نژاد. تهران: دانشگاه تربیت مدرس.
  • اردکانی؛ امیررضا؛ گلابچی، محمود؛ حسینی، سیدمحمود؛ و علاقه‌مندان، متین (1396). «بررسی تأثیر فرم معماری ساختمان‌های بلند بر پایداری سازه‌ای آنها با هدف کاهش مخاطرات زلزله (نمونۀ موردی: تأثیر پارامتر شکل پلان)»، مدیریت مخاطرات محیطی، دورۀ 4، شمارۀ 1، ص 42-27.
  • پژوهشگاه بین‌المللی زلزله‌شناسی. (12/5/2020)، لرزه‌خیزی ایران. بازیابی در 9/3/1400، از http://www.iiees.ac.ir/fa/2012-09-24-08-01-17/
  • پیری‌زاده؛ محبوبه؛ و شکیب؛ حمزه (1394). «الزامات بلندمرتبه‌سازی و میان‌مرتبه‌سازی از منظر مدیریت کاهش خطرپذیری لرزه‌ای»، هفتمین کنفرانس بین‌المللی زلزله‌شناسی و مهندسی زلزله، ص 10-1.
  • چارلسون، اندرو (1390). طراحی لرزه‌ای برای معماران، ترجمۀ محمود گلابچی، تهران: انتشارات دانشگاه تهران.
  • شورای عالی شهرسازی و معماری ایران. (1398). ضوابط عام بلندمرتبه‌سازی. بازیابی در 13/6/1401، از https://rc.majlis.ir/fa/law/show/1251426
  • کاظمی سنگدهی، سید پویان؛ افغانی خوراسکانی، رهام؛ و تحمیلدوست، محمد (1399). «بررسی تأثیر هندسۀ پلان ساختمان‌های بلند با سازۀ دایاگرید بر رفتار سازه‌ای آنها در برابر بار جانبی زلزله»، صفه، دورۀ 30، شمارۀ 1، ص 58-43.
  • گلابچی، محمود (1391). مبانی طراحی ساختمان‌های بلند، تهران: انتشارات دانشگاه تهران.
  • محمودی صالحی، موسی؛ و محمودی صالحی، فرید. (1392). فلسفۀ طراحی لرزه‌ای براساس عملکرد، تهران: انتشارات دانشگاه تربیت دبیر شهید رجایی.
  • مختاری موسوی، سید آیسن؛ اخلاصی، احمد؛ حسینی، محمود؛ و تقدیری، علیرضا (1400). «بررسی تأثیر هندسۀ پلان و انحنای بدنۀ ساختمان بر رفتار لرزه‌ای ساختمان‌های بلند دارای سازۀ هگزاگرید»، مدیریت مخاطرات محیطی، دورۀ 8، شمارۀ 1، ص 47-31.
  • مرکز تحقیقات راه و مسکن و شهرسازی (الف). (1394). مبحث ششم. تهران: مرکز تحقیقات راه و مسکن و شهرسازی.
  • مرکز تحقیقات راه و مسکن و شهرسازی (ب). (1394). آیین‌نامۀ طراحی ساختمان‌ها در برابر زلزله، استاندارد 2800. تهران: مرکز تحقیقات راه و مسکن و شهرسازی.
  • مقیمی، ابراهیم (1393). دانش مخاطرات برای زندگی با کیفیت بهتر، تهران: انتشارات دانشگاه تهران
  • نوری‌فر، آزاده؛ و مهدی‌زاده سراج، فاطمه (1397). «نقش معماران بر عملکرد لرزه‌ای ساختمان‌های میان مرتبۀ متعارف با بهره‌گیری از تجارب زلزله‌های گذشته»، نقش‌جهان، سال 8، شمارۀ 1، ص 44-36.
  • Arnold, C. (2006). Designing for Earthqake; A Mannual for Architects, pp: 1-53. FEMA.
  • Ardekani, A.; Dabbagh, I.; Alaghmandan, M; & Golabchi, M. (2019). “Parametric design of diagrid tall buildings regarding structural efficiency”, Architectural Science Review, 63(4), pp: 1-16
  • Elnimier, M.; & Almusharaf, A. (2012). “Structure and Architecture Form of Tall Buildings, International Conference on Sustainable Building Asia p. 5461. Seoul, Korea: ICSBA.
  • FEMA-454. (2006). Designing for Earthquake; A Manual for Architects. California, LA.: FEMA.
  • Golasz, H.; & Szolomicki, J. (2019). “Architectural and Structural Analysis of Selected Twisted Tall Buildings”, Materials Science and Engineering, IOP.
  • Hameed Hussein, S.; & Safa Hussain, M. (2017). “The Strategies of Architectural Design Resisting Earthquake in Tall Buildings”, Al-Nahrain Journal for Engineering Sciences, pp: 436-445.
  • Javidannia (Abolvardi), G.; Bemanian, M.; & Mahdavinejda, M. (2021). “Generative Design Workflow for Seismic-Efficient Architectural Design of Tall Buildings; A Multi-object Optimization approach”, SIMAud, pp: 1-8)
  • Javidannia (Abolvardi), G.; Bemanian, M.; & Mohammadjavad, M. (2020). “Performance Oriented Design Framework for Early Tall building form Development”, eCAADe38, pp: 144-154, Berline,Germany: eCAADe.
  • Khoraskani, R. A. (2018). “Adaptation of Hyperboloid Structure for High-Rise Buildings with Exoskeleton”, Arch, pp: 1-10. Venic, Italy.
  • Kazemi, P.; Afghani Khoraskani, R.; & Tahsildoost, M. (2018). “Structural Efficiency of Tall Buildings: by Means of Parametric Design”, CTBUH.
  • Mahdavinejad, M.; Bemanian, M.; & Abolvardi (Javidannia), G. (2012). “Analyzing the state of seismic consideration of architectural non‐structural components (ANSCs) in design process (based on IBC)”, International Journal of Disaster Resilience in Built Environment, pp: 133-147.
  • Mahdavinejad, M.; Bemanian, M.; & Abolvardi (Javidannia), G. (2011). “Explaining the State of Seismic Consideration of Architectural Non-structural Components in Design Process Case Study: Bam Earthquake”, Australian Journal of Basic and Applied Sciences, pp: 119-126.
  • Maenpaa, J. (2018). Algorithm-Aided Structural Engineering of Steel-framed Warehouse. Tampere University of Technoigy,.
  • Moon, k. S. (2011). Diagrid Structure for Complex-Shaped Tall Buildings. the twelfth east Asia-pacific conference on structural Engineering and Construction, pp: 1343-1350, Hong Kong: Elsivier.
  • Mirnizmandan, S.; Alghmandan, M.; & Barazandeh, F. (2018). “Mutual effect of geometric modifications and diagrid structure on structural optimization of tall buildings”, Architectural Science Review, pp: 1-13.
  • Park, S.; Elnimeiri, M.; Sharpe, D. C.; & Krawczyk, R. J. (2004). Tall Building Form Generation by Parametric Design Process. CTBUH 4th World Conference pp: 1-7. Seoul: CTBUH.
  • Preisinger, C. (2015). Karamba.
  • Shakib, H.; Dardaei, S.; & Pirzad, M. (2011). “A Proposed Seismic Risk Reduction Program for the Mega City of Tehran, Iran”, Journal of Natural Hazard Review, pp: 140-146.
  • Vollers, K. (2008). “Morphological Scheme of second-generation non-orthogonal high-rises. CTBUH 8th World Congress”, pp: 1-9. Dubai: CTBUH.