Ranking of the Siah Cheshmeh drainage basin in terms of flooding to manage flood hazards

Document Type : Applied Article

Authors

Department of Geomorphology, Faculty of Planning and Environmental Sciences, University of Tabriz, Iran

10.22059/jhsci.2023.356121.768

Abstract

The present study investigates and analyzes the role of hydrogeomorphic parameters in flood susceptibility of sub-basins of the Siah Cheshmeh basin located in West Azerbaijan province. For this purpose, first, the study area was divided into 6 sub-basins based on topographic and drainage characteristics using a digital elevation model (DEM) with a spatial resolution of 12.5 m. In the next step, 8 hydrogeomorphic parameters including Stream order, Streams length, Drainage density, Compactness coefficient, Circularity ratio, Form factor, Basin relief and Ruggedness number were prepared using Horton, Schumm, and Strahler geomorphological rules in ArcGIS software. Then, to weight the parameters, the SWARA multi criteria decision-making method was used, and the relative weight of each of the eight parameters was determined for the 6 studied sub-basins. The results of weighting and prioritization showed that sub-basins 2 and 4 with the weight of 0.276 and 0.250, respectively, have the highest weight and have very high flood susceptibility. In contrast, sub-basins 3, and 5 with weights of 0.105, and 0.061, respectively, had the lowest weights in terms of 8 parameters, and therefore, in terms of Flood susceptibility is very low in the class. The total area of the sub-basins that are in high and very high classes (sub-basins 2, and 4) is about 327 Km2, which includes 33.8% of the total area of the basin.

Keywords


[1]. اکبرپور، ابوالفضل؛ و شریفی، محمدباقر (1386). محاسبۀ رواناب با استفاده از توزیع مکانی شاخص‌های مبتنی بر توپوگرافی، نشریۀ دانشکدۀ مهندسی، 19(1)، 85-106.
[2]. بدری، بهرام؛ زارع بیدکی، رفعت؛ هنربخش، افشین؛ و آتشخوار، فاطمه (1395). اولویت‌بندی زیرحوضه‌های آبریز بهشت‌آباد از نظر پتانسیل سیل‌خیزی، پژوهش‌های جغرافیای طبیعی، 48(1)، 143-158.
[3]. خلج، محمد (1399). تحلیل مخاطرات لرزه‌ای حوضۀ آبریز تالار و بابل رود بر اساس ارزیابی شاخص‌های مورفوتکتونیک، جغرافیا و مخاطرات محیطی، 33، 1-16.
[4]. رضائی‌مقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل؛ و رحیم‌پور، توحید (1399). تحلیل خصوصیات هیدروژئومورفیک حوضۀ آبریز الندچای به‌منظور اولویت‌بندی زیرحوضه‌ها از نظر حساسیت سیل‌خیزی، جغرافیا و مخاطرات محیطی، 33، 61-83.
[5]. رضائی‌مقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل؛ و رحیم‌پور، توحید (1399). بررسی حساسیت سیل‌خیزی حوضه‌های آبریز با استفاده از شاخص‌های هیدروژئومورفیک (مطالعۀ موردی: حوضۀ آبریز الندچای، شمال غرب ایران)، پژوهش‌های ژئومورفولوژی کمی، 9(2)، 195-214.
[6]. زارع، مهدی؛ و مقیمی، ابراهیم (1401). گونه‌شناسی مخاطرات در علم مخاطره‌شناسی (آیا علم مخاطره‌شناسی گونه‌های خاصی دارد؟)، مدیریت مخاطرات محیطی، 9(4)، 383-390.
[7]. قضاوی، رضا؛ بابایی حصار، سحر؛ و عرفانیان، مهدی (1398). اولویت‌بندی زیرحوزه‌های شهری مستعد سیلاب با استفاده از تکنیک PCA به‌عنوان یک روش جدید وزن‌دهی، مخاطرات محیط طبیعی، 20، 83-100.
[8]. محمدی، مجتبی؛ محمدی‌فر، علی‌اکبر؛ فروزان فرد، معصومه؛ و جلالی، مهدی (1401). اولویت‌بندی سیل‌خیزی زیرحوزه‌های آبخیز دهبار در استان خراسان رضوی با استفاده از مدل TOPSIS، آنالیز مورفومتریک و تجزیه‌وتحلیل منطقه‌ای سیلاب، مدیریت حوزۀ آبخیز، 13(25)، 188-196.
[9]. Abuzied, S., Yuan, M., Ibrahim, S., Kaiser, M., & Saleem, T. (2016). Geospatial risk assessment of flash floods in Nuweiba area, Egypt, Journal of Arid Environments, 133, 54-72. http://dx.doi.org/10.1016/j.jaridenv.2016.06.004.
[10]. Ahmadisharaf, E., Tajrishy, M., & Alamdari, N. (2016). Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making, Journal of Environmental Planning and Management, 59, 1397–1417. https://doi.org/10.1080/09640568.2015.1077104.
[11]. Aksoy, H., Kirca, V.S.O., Burgan, H.I., & Kellecioglu, D. (2016). Hydrological and hydraulic models for determination of flood-prone and flood inundation areas, The 7th International Water Resources Management Conference of ICWRS, 373, 137–141. doi: 10.5194/piahs-373-137-2016.
[12]. Bisht, S., Chaudhry, S., Sharma, S., & Soni, S. (2018). Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India, Remote Sensing Applications: Society and Environmen. 12, 35-47. https://doi.org/10.1016/j.rsase.2018.09.001.
[13]. Biswas, S., Sudhakar, S., Desai, V.R. (2002). Remote sensing and geographic information system based approach for watershed conservation, Survey Engineering. 128, 108-124.
[14]. Borga, M., Gaume, E., Creutin, J.D, Marchi, L. (2008). Surveying flash floods: gauging the ungauged extremes, Hydrological Processes. 22, 3883–3885. https://doi.org/10.1002/hyp.7111.
[15]. Cloke, H.L., Pappenberger, F. (2009). Ensemble flood forecasting: a review, Journal of Hydrology. 375(3), 613–626. https://doi.org/10.1016/j.jhydrol.2009.06.005.
[16]. Costa, E. (1987). Hydraulics and basin morphometry of the largest flash floods in the conterminous United States, Journal of Hydrology. 93(3-4), 313–338.
[17]. Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India, Remote Sensing Applications: Society and Environment. 14, 60-74. https://doi.org/10.1016/j.rsase.2019.02.006.
[18]. Gardiner, V. (1990). Drainage basin morphometry; In: Geomorphological techniques (ed.) Goudie A. Unwin Hyman, London, 71–81.
[19]. Grohmann, C.H (2004). Morphometric analysis in geographic information systems: Applications of free software GRASS and R Star, Computer and Geoscience. 30(10), 1055-1067.
[20]. Hadely, R.F, Schumm, S.A. (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River basin. United States Geological Survey water-supply paper, 1531-B. Washington, DC: US Government Printing Office, 137–196.
[21]. Horton, R.E. (1945). Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull. 56(3), 275–370.
[22]. Ifabiyi, I.P, & Eniolorunda, N.B. (2012). Watershed characteristics and their implication for hydrologic response in the upper Sokoto basin, Nigeria, Journal of Geography and Geology. 4(2), 147.
[23]. Kendall, M.G. (1970). Rank correlation methods, 4th edn. Griffin, London.
[24]. Keršuliene, V., Zavadskas, E.K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA), Journal of Business Economics and Management. 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12.
[25]. Kourgialas, N.N., & Karatzas, G.P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study”, Hydrological Sciences Journal. 56(2), 212–225. https://doi.org/10.1080/02626667.2011.555836.
[26]. Kumar Rai, P., Narayan Mishra, V., & Mohan, K. (2017). “A study of morphometric evaluation of the Son basin, India using geospatial approach, Remote Sensing Applications: Society and Environment. 7, 9-20. http://dx.doi.org/10.1016/j.rsase.2017.05.001.
[27]. Mahmood, Sh., & Rahman, A. (2019). Flash flood susceptibility modelling using geomorphometric approach in the Ushairy Basin, eastern Hindu Kush, J. Earth Syst. Sci. 128(97), 1-14. https://doi.org/10.1007/s12040-019-1111-z.
[28]. Mahmood, Sh., & Rahman, A. (2019). Flash flood susceptibility modeling using geo- morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan, Environmental Earth Sciences. 78(43), 1-16. https://doi.org/10.1007/s12665-018-8041-y.
[29]. Miller, V.C. (1953). A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virgina and Tennessee, Technical Report (3), Dept. of Geol. New York: Columbia University, 389–402.
[30]. Nookaratnam, K., Srivastava, Y.K., Venkateswarao, V., Amminedu, E., & Murthy, K.S.R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis - remote sensing and GIS perspective, Jour. Indian Soc. Remote Sens. 33 (1), 25–38.
[31]. Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, 56(7), 1405–1415. https://doi.org/10.1007/s00254-008-1235-y.
[32]. Patton, P.C, & Baker, V.R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls, Water Resour Res. 12, 941–952.
[33]. Prasad, R.N., & Pani, P. (2017). Geo-hydrological analysis and sub watershed prioritization for flash flood risk using weighted sum model and Snyder’s synthetic unit hydrograph, Modeling Earth Systems and Environment. 3(4), 1491–1502. https://doi.org/10.1007/s40808-017-0354-4.
[34]. Schumm, S.A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geological Society of America Bulletin. 67(5), 597–646. http://dx.doi. / 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
[35]. Schumm, S.A. (1997). Drainage density: problems of prediction'. In: Stoddart, D.R. (Ed.), Process and Form in Geomorphology. Routledge, London, 15- 45.
[36]. Sethupathi, A.S., Lakshmi Narasimhan, C., Vasanthamohan, V., & Mohan, S.P. (2011). Prioritization of miniwatersheds based on Morphometric Analysis using Remote Sensing and GIS techniques in a draught prone Bargur – Mathur subwatersheds, Ponnaiyar River basin, India, International Journal of Geomatics and Geosciences. 2(2), 403-414.
[37]. Singh, N., & Singh, K. K. (2017). Geomorphological analysis and prioritization of sub- watersheds using Snyder’s synthetic unit hydrograph method, Applied Water Science. 7(1), 275–283. https://doi.org/10.1007/s13201-014-0243-1.
[38]. Strahler, A.N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology.
[39]. Yousefi, S., Mirzaee, S., Keesstra, S., Surian, N., Pourghasemi, H.R., Zakizadeh, H.R., & Tabibian, S. (2018). Effects of an extreme flood on river morphology (case study: Karoon River, Iran), Geomorphology. 304, 30–39. https://doi.org/10.1016/j.geomorph.2017.12.034.
[40]. Zavadskas, E.K., Turskis, Z., Ustinovichius, L., & Shevchenko, G. (2010). Attributes weights determining peculiarities in multiple attribute decision making methods, Economics of Engineering Decisions. 21(1), 32–43.
[41]. Zavadskas, E.K., & Vilutiene, T. (2006). A multiple criteria evaluation of multi-family apartment block’s maintenance contractors: I-model for maintenance contractor evaluation and the determination of its selection criteria, Building and Environment. 41(5), 621–632.