Landslide hazard mapping in Bukan - Sardasht road using the weight of evidence and evidential belief function models

Document Type : Applied Article


1 Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Iran

2 Expert of the General Department of Natural Resources and Watershed Management of Kurdistan Province, Iran



Communication ways can be one of the most basic elements in the progress of civilizations and provide the grounds for economic growth and development of different regions. Natural disasters, including landslides, floods, earthquakes, storms, soil erosion, and tsunamis, cause great damage to property and human life, among which landslides are recognized as one of the most important natural disasters worldwide. Landslides are one of the most important environmental hazards in mountainous areas, they have adverse consequences such as the destruction of human lives, economic problems, death, and harm to the lives of humans and other living beings, disrupting infrastructure and Vital arteries causing the destruction of the tourism industry and historical and cultural monuments.
Landslide occurrences in Iran are one of the most important natural disasters, and they suddenly disturb the morphology of the earth's surface in mountainous areas and lead to a lot of financial and human losses. According to preliminary estimates, 500 billion rials of financial damage is caused to the country by landslides in Iran every year. Natural factors such as rainfall, geology, soil type, river flooding, and earthquakes due to the activation of faults along with other human factors such as road construction and road trenches for the purpose of road development and widening cause roadside landslides in mountainous areas every year. Therefore, for the purpose of zoning the landslides occurring on the roads, it is very necessary to use GIS spatial prediction models. According to the above-mentioned materials, the current research was conducted in order to zone the risk of landslides in the Bukan-Sardasht mountain road using the Evidential Belief Function and Weight of Evidence models.
Materials and Methods
After the investigations carried out in the studied area, twelve factors including lithological layers, distance from the fault, degree of slope, direction of slope, vegetation differentiation index, distance from the waterway, normal curve shape of the range, vertical curvature of the range, horizontal curvature of the range, Rainfall, distance from the road and height above sea level were found to be effective factors in the occurrence of landslides in the study area. During field investigations and control of satellite images, 109 cases of landslides were observed on the surface of the Bukan-Sardasht Road, and the reason for these instabilities was excavation and loss of the foot of the slope as a result of road construction activities, as well as erosion of waterways and erosion of river banks. By identifying the landslide areas, the first step in preparing the landslide susceptibility map was done.
Result and discussion
The communication axis of Bukan-Sardasht is a mountain road and has many landslides. According to the visits made in the study area, 109 small and large landslide points were recorded in the studied basin. From a total of 109 observed slip points. There are factors related to topography, geology, climate, permeability, slope, waterways network, and human factors such as road network and land use changes that cause landslides. Therefore, twelve influential factors including geological factors, slope degree, slope direction, normal slope curvature, transverse curvature, longitudinal curvature, height above sea level, NDVI, distance from faults, distance from road, distance from waterway and rainfall using two the weighted evidence model (WOE) and the definite evidence function model (EBF) were used to determine the landslide risk potential.
They had made comparisons between statistical and probabilistic methods and concluded that WOE and EBF methods had a higher area under the ROC curve and showed that these methods have high accuracy in preparing landslide susceptibility maps, which the present study also expresses their opinion. Yalchin et al. (2011) [1] also compared the methods of frequency ratio, weighted evidence, and logistic regression, and they obtained the area value under the ROC curve for each of the mentioned methods as 0.890, 0.903, and 0.840 respectively. brought that it indicated a very good estimate of the weighted evidence method compared to other methods. According to the area under the curve obtained from the definite evidence function method in the present study, the results of this research are consistent with the studies of Shahabi et al., (2023) [2] and Tawakolifar et al., (2023) [3]. The above researchers had proposed various statistical methods such as weighting of evidence, frequency ratio logistic regression, and artificial neural network as suitable tools in preparing the landslide susceptibility map, and the results obtained from this research also express the opinion. it is them.
In this study, evaluation and comparison between two data mining methods of weighted evidence and conclusive evidence function were done. The validation of the results with the Rock Index (ROC) indicated that the methods used in this study had a very good ability to predict the areas with landslide susceptibility in the area around Bukan-Sardasht road, and in the meantime, the method is subject to definitive evidence with the level Under the ROC curve equal to 0.910 with a standard error of 0.044, compared to the weighted evidence method with the area under the ROC curve equal to 0.893, had better predictions. There are many influencing factors on the occurrence of landslides and the selection The most important factors in the occurrence of landslides are of great importance in this study twelve factors were used. It seems that other factors such as the intensity of rainfall, soil texture, and underground water (springs) are also factoring that trigger and cause landslides in the study area and it is suggested that they be considered in future studies.


  • احمدی، حسن؛ و فیض‌نیا، سادات (1385). سازندهای دوره کواترنر (مبانی نظری و کاربردی آن در منابع طبیعی)، چ 2، تهران: انتشارات دانشگاه تهران.
  • احمدی، حسن؛ اسمعلی، اباذر؛ فیض‌نیا، سادات؛ و شریعت جعفری، محسن (1382). پهنه‌بندی خطر حرکت‌های توده‌ای با استفاده از دور روش رگرسیون چندمتغیره و تحلیل سلسله‌مراتبی. منابع طبیعی ایران، 56 (4): 323-334.
  • اشقلی فراهانی، عقیل؛ تشنه‌لب، محمد؛ غیومیان، جعفر؛ و فاطمی عقدا، سید محمد (1384). بررسی خطر زمین‌لغزش با استفاده از منطق فازی (مطالعۀ موردی: منطقه رودبار). مجلۀ علوم دانشگاه تهران، 31 (1)، 43-64.
  • پورقاسمی، حمیدرضا؛ مرادی، حمیدرضا؛ و محمدی، مجید (1389). کاربرد سامانۀ اطلاعات مکانی و مدل احتمالی Weight of evidence در پهنه‌بندی حساسیت زمین‌لغزش، مجموعه‌ مقالات هفتمین همایش ملی رسانه‌های اطلاعات مکانی GIS، سازمان نقشه‌برداری کشور.
  • حسین‌آبادی، مهدی؛ موسوی، مرتضی؛ و ناظمی، محمد (1398). پهنه‌بندی خطر زمین‌لرزه و زمین‌لغزش به روش منطق فازی در رشته‌کوه باقران (جنوب بیرجند). جغرافیا و توسعه، 17(55)، 153-174.
  • روستایی، شهرام؛ کشکی، مختار؛ و اشرفی، زهرا (1399). پهنه‌بندی خطر زمین‌لغزش در حوضه آبریز طالقان با استفاده از شاخص آنتروپی شانون. جغرافیا و برنامه‌ریزی، 24(71)، 125-150.
  • زارع، محمد؛ جوری، محمدحسن؛ عسکری‌زاده، دیانا؛ سالاریان، تینا؛ و فخرقاضی، مونا (1395). تحلیل خطر زمین‌لغزش در حوزۀ آبخیز ماسوله با استفاده از تئوری دمپستر- شیفر (Dempster – Shafer) و GIS. پژوهشنامۀ مدیریت حوزۀ آبخیز، 7 (13)، 209 -217.
  • شادفر، صمد؛ قدوسی، جمال؛ خلخالی، سید علی؛ و کلارستاقی، عطااله (1387). بررسی و ارزیابی روش‌های آماری دومتغیره و LNRF در پهنه‌بندی خطر زمین‌لغزش (مطالعۀ موردی: حوزۀ آبخیز جنت رودبار). پژوهش و سازندگی در منابع طبیعی، 78، 56-66.
  • میرزانیا، صالح؛ و شهابی، هیمن (1398). ارزیابی و پیش‌بینی مکانی مخاطره زمین‌لغزش در جادۀ کوهستانی سنندج-کامیاران با استفاده از الگوریتم‌های پیشرفتۀ داده‌‌کاوی. مدیریت مخاطرات محیطی (دانش مخاطرات سابق)، 6(4)، 317-340.
  • قاسمیان، بهاره؛ عابدینی، موسی؛ روستایی. شهرام؛ و شیرزادی، عطاالله (1396). ارزیابی حساسیت زمین‌لغزش با استفاده از الگوریتم ماشین پشتیبان‌بردار (مطالعه موردی: شهرستان کامیاران، استان کردستان)، پژوهش‌های ژئومورفولوژی کمی، 6(3)، 15-36.
  • مرادی، حمیدرضا؛ پورقاسمی، حمیدرضا؛ محمدی، مجید؛ و مهدوی فر، محمدرضا (1389). پهنه‌بندی خطر زمین‌لغزش با استفاده از اپراتور فازی گاما (مطالعۀ موردی: حوزۀ آبخیز هراز). علوم محیطی، 7(4)، 129-142.
  • یمانی، مجتبی؛ احمدآبادی، علی؛ و زارع، غلامرضا (1391). به‌کارگیری الگوریتم ماشین‌های پشتیبان بردار در پهنه‌بندی خطر وقوع زمین‌لغزش (مطالعۀ موردی: حوضۀ آبریز درکه)، جغرافیا و مخاطرات محیطی، 3، 125-142.
  • Akgun A., (2012), A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9, 93–106.
  • Assilzadeh, H., Levy, J. K., & Wang, X. (2010). Landslide catastrophes and disaster risk reduction: A GIS framework for landslide prevention and management. Remote Sensing, 2(9): 2259-2273.
  • Bilifard, F., Jaboyedoff, M., & Satori, M. )2003(. Rock fall hazard mapping a long a mountainous road in Switzerland using a GIS-based paramte rating approach. The journal of Natural Hazard and Earth System Sciences, 3, 431-438.
  • Bui, D. T., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., Mohammadi, A., Ahmad, B. Bin., Panahi, M., Hong, H., & Tian, Y. (2018). Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands. Remote Sensing, 10(10).
  • Cheng, Y.S., Yu, T.T. & Son, N.T. (2021). Random forests for landslide prediction in tsengwen river watershed, central taiwan. Remote Sensing, 13(2), 199.
  • Ercanoglu, M. & Gokceoglu, C. (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 75(3-4), 229-250.
  • Intarawichian, N., & Dasananda, S., (2010). Analytical hierarchy process for landslide susceptibility mapping in lower Mae Chaem watershed, northern Thailand. Suranaree Journal of Science & Technology, 17(3): 55-65.
  • Jaiswal, P., van Westen, C. J., & Jetten, V. (2010). Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering geology, 116(3-4), 236-250.
  • Lee, S., Ryu, J. H., & Kim, I. S. (2007). Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides, 4(4), 327-338.
  • Pradhan, B. &, Lee, S., (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci, 60:1037–1054.
  • Shahabi H., Hashim M., & Ahmad BB., (2015). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ Earth Sciences, 73:8647–8668
  • Shahabi, H., Ahmadi, R., Alizadeh, M., Hashim, M., Al-Ansari, N., Shirzadi, A., Wolf, I.D. & Ariffin, E.H. (2023). Landslide Susceptibility Mapping in a Mountainous Area Using Machine Learning Algorithms. Remote Sensing, 15(12), p.3112.
  • Shen, H., Huang, F., Fan, X., Shahabi, H., Shirzadi, A., Wang, D., Peng, C., Zhao, X. & Chen, W. (2022). Improving the performance of artificial intelligence models using the rotation forest technique for landslide susceptibility mapping. International Journal of Environmental Science and Technology, pp.1-16.
  • Suzen, M.L., & Doyuran, V. )2004(. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Geol. 71, 303–321.
  • Tavakolifar, R., Shahabi, H., Alizadeh, M., Bateni, S.M., Hashim, M., Shirzadi, A., Ariffin, E.H., Wolf, I.D. & Shojae Chaeikar, S. (2023). Spatial Prediction of Landslides Using Hybrid Multi-Criteria Decision-Making Methods: A Case Study of the Saqqez-Marivan Mountain Road in Iran. Land, 12(6), 1151.
  • Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; & Mehl, H. (2007). Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sensing, 45, 1520–1528.
  • Yalcin, A., Reis, S., Aydinoglu, A.C. & Yomralioglu, T. )2011(. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3),.274-287.
  • Yeh, H. H., Liu, P. L., & Synolakis, C. (Eds.). (2008). Advanced numerical models for simulating tsunami waves and runup (Vol. 10). World Scientific.
  • Yilmaz, I. (2010), Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61(4), 821-836.
  • Zhang, Y. G., Chen, X. Q., Liao, R. P., Wan, J. L., He, Z. Y., Zhao, Z. X., ... & Su, Z. Y. (2021). Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area. Natural Hazards, 107(2), 1709-1729.