Employing Quartz OSL dating to estimate the slip rate of the Doruneh Fault System in Khalilabad

Document Type : Applied Article

Authors

1 Ph.D. Student, Department of Seismology, Institute of Geophysics, University of Tehran, Tehran, Iran

2 Assoc. Prof., Department of Seismology, Institute of Geophysics, University of Tehran, Tehran, Iran

3 Asst. Prof., Department of Seismology, Institute of Geophysics, University of Tehran, Tehran, Iran

10.22059/jhsci.2024.385250.849

Abstract

The first step in earthquake hazard assessment is identifying and mapping active faults, and then calculating their activity in a specific area. The fault slip rate is a key parameter for understanding the rate of activity and potential hazards of a fault. Therefore, it is necessary to determine the fault slip rate and, if possible, the return period of earthquakes caused by that fault. The aim of this study is to determine the slip rate on the Doruneh Fault System (DFS) in Khalilabad using the Optically Stimulated Luminescence (OSL) method. The DFS is an active fault in the Iranian Plateau, located in the northern part of the Khalilabad. This fault system displaced the existing drainage on the generation of an alluvial fan in the northeast of Khalilabad. Using QuickBird, the displacement of the drainage on an old alluvial fan in northeast Khalilabad was measured to be approximately 260 ± 40 m. Subsequently, the extracted quartz from two sediment samples that were collected from a pit excavated into the surface of the alluvial fan was dated using the OSL method. The age of quartz was determined by measuring the equivalent dose, calculated using the Single Aliquot Regenerative (SAR) method, and the dose rate, determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of the sample. Additionally, the last sedimentation period and the slip rate of this part of the DFS were estimated to be approximately 89700-102800 years and 2.1-3.3 mm per year, respectively.

Keywords


[1] امینی، حمیده؛ فتاحی، مرتضی؛ و قاسمی، محمدرضا (1389). آشکارسازی پویایی نوین گسل درونه با کمک داده‌های دورسنجی و اطلاعات زمین‌شناسی. علوم زمین، 19(76)، 57-62.
[2] امینی، حمیده؛ فتاحی، مرتضی؛ و قاسمی، محمدرضا (1390). محاسبۀ نرخ لغزش در منطقۀ شش‌تراز گسل درونه به روش هیستوگرام و حداقل سن با استفاده از لومینسانس برانگیخته‌شده با نور. ژئوفیزیک ایران، 5(3)، 29-14.
[3] جوادی ‌کاریزکی، حمیدرضا (1385). زمین‌ساخت جنبا، لرزه‌زمین‌ساخت و تحلیل سامانۀ گسل درونه. پایان‌نامۀ کارشناسی ارشد، پژوهشکدۀ علوم زمین، سازمان زمین‌شناسی و اکتشاف معدنی کشور، تهران، ایران.
[4] حفیظی، سبا؛ فتاحی، مرتضی؛ و امینی، حمیده (1400). استفاده از لومینسانس نوری فروسرخ به‌منظور اندازه‌گیری نرخ لغزش گسل درونه در خلیل‌آباد. کواترنری ایران، 6(2)، 300-324.
[5] زارع، مهدی (1379). تحلیل لرزه‌زمین‌ساختی سیستم گسلۀ درونه و بررسی زلزله‌های زمستان 1378 - بهار 1379 کاشمر. پژوهش‌نامۀ زلزله‌شناسی و مهندسی زلزله، 32-40.
[6] فتاحی، مرتضی (1400). بررسی عوامل مؤثر در نمونه‌برداری برای سن‌یابی به روش لومینسانس نوری. ژئوفیزیک ایران، 15(3)، 27-46.
[7] مقیمی، ابراهیم (1403). رویکرد جدید به مخاطرات محیطی و توسعۀ پایدار در ایران. مدیریت مخاطرات محیطی، 11(1)، 73-84.
[8] Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia Eurasia collision and the comparison of short term and long-term deformation rates. Tectonics, 23.
[9] Duller, G.A.T. (2015). Analyst v4.31.7 user manual. Technical report.
[10] Farbod, Y., Bellier, B., Shabanian, E., & Abbassi, M. R. (2011). Geomorphic and structural variations along the Doruneh Fault System (central Iran). Tectonics, 30, TC6014, doi: 10.1029/2011TC002889.
[11] Farbod, Y., Shabanian, E., Bellier, O., Abbassi, M., Braucher, R., Benedetti, L., & Hessami, K. (2016). Spatial variations in late Quaternary slip rates along the Doruneh Fault System (Central Iran). Tectonics, 35, 386 – 406.
[12] Fattahi, M., Walker, R. T., Khatib, M. M., Dolati, A., & Bahroudi, A. (2007). Slip-rate estimate and past earthquakes on the Doruneh fault, eastern Iran. Geophys. J. Int., 168, 691-709.
[13] Fattahi, M. (2009). Dating past earthquakes and related sediments by thermoluminescence methods: A review. Quat. Int., 199, 104–146, doi:10.1016/j. quaint.2008.06.015.
[14] Foroutan, M., Nazari, H., Meyer, B., Sébrier, M., Fattahi, M., Le Dortz, K., Ghorashi, M., Hessami, Kh., Ghassemi, M. R., & Talebian, M. (2012). Late Pleistocene-Holocene Right- Slip Rate of The Dehshir Fault, Central Iran Plateau. Scientific Quarterly Journal of Geosciences. GSJ. 1023-7429. https://doi.org/10.22071/gsj.2011.54458.
[15] Karimi Moayed, N., Fattahi, M., Autzen, M., Haghshenas, E., Tajik, V., Shoaie, Z., Bailey, M., Sohbati, R., & Murray, A. S. (2024). The sensitisation of quartz extracted from andesite, Radiation Measurements. 170, 107048, ISSN 1350-4487, https://doi.org/10.1016/j.radmeas.2023.107048.
[16] Krapf, C. B. E., Werner, M., Questiaux, D., Spooner, N., Williams, F., & Dutch, R. (2018). Optically stimulated luminescence dating revealing new insights into the age of major regolith units of the eastern Musgrave Province, South Australia. Report Book 2018/00004. Department for Energy and Mining, South Australia, Adelaide.
[17] Lamothe, M., Brisson, L. F., & Hardy, F. (2020). Circumvention of anomalous fading in feldspar luminescence dating using Post-Isothermal IRSL. Quaternary Geochronology, 57, 101062, ISSN 1871-1014, https://doi.org/10.1016/j.quageo.2020.101062.
[18] Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., & Ghafory-Ashtiani, M. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160(1), 217–226. https://doi.org/10.1111/j.1365-246X.2004.02465.x.
[19] Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignières, M., Nankali, H., & Van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran. Geophysical Journal International, 170(1), pp. 436–440. https://doi.org/10.1111/j.1365-246X.2007.03477.x.
[20] Mousavi, Z., Walpersdorf, A., Walker, R.T., Tavakoli, F., Pathier, E., Nankali, H.R.E.A., Nilfouroushan, F., & Djamour, Y. (2013). Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region. Earth and Planetary Science Letters, 377, 287-298.
[21] Mousavi, Z., Fattahi, M., Khatib, M., Talebian, M., Pathier, E., Walpersdorf, A., et al. (2021). Constant slip rate on the Doruneh strike-slip fault, Iran, averaged over late Pleistocene, Holocene, and decadal timescales. Tectonics, 40, e2020TC006256. https://doi.org/10.1029/2020TC006256.
[22] Murray, A. S., & Wintle, A. G. (2000). Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurements, 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
[23] Pezzo, G., Tolomei, C., Atzori, S., Salvi, S., Shabanian, E., Bellier, O., & Farbod, Y. (2012). New kinematic constraints of the western Doruneh fault, northeastern Iran, from interseismic deformation analysis. Geophysical Journal International, 190(1), 622–628, https://doi.org/10.1111/j.1365-246X.2012.05509.x.
[24] Tavakoli, F. (2007). Present-day deformation and kinematics of the active faults observed by GPS in the Zagros and east of Iran. Ph. D. Thesis, 313P.
[25] Tchalenko, J. S., Berberian, M., & Behzadi, H. (1973). Geomorph1c and seismic evidence for recent activity on the Doruneh Fault, Iran. Tectonophysics, 19(4), 1973, Pages 333-341, ISSN 0040-1951, https://doi.org/10.1016/0040-1951(73)90027-9.
[26] Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., & Chéry, J. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), pp. 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x.
[27] Walker, R. T., & Fattahi, M. (2011). A framework of Holocene and Late Pleistocene environmental change in eastern Iran inferred from the dating of periods of alluvial fan abandonment, river terracing, and lake deposition. Quaternary Science Reviews, 30(9–10), 1256-1271, ISSN 0277-3791, https://doi.org/10.1016/j.quascirev.2011.03.004.