Hazards Tracin Hoz-e Soltan Playa through Investigating Chaos in Micro-landforms

Document Type : Applied Article


1 Associate Professor, Department of Physical Geography, Shahid Beheshti University, Tehran, Iran

2 PhD Student, Department of Physical Geography, Shahid Beheshti University, Tehran, Iran


Human intervention in intensification of natural hazards is a concern for researchers. Recognizing the response of morphological phenomena to human activities is not traceable in all phenomena. Small landforms could capture short-term changes caused by human interventions and react to them. Playa are among the areas in which micro-landforms changes can be traced monthly or permanently. Playa are the remaining parts of Quaternary rainy lakes which most of them currently drain the arid and semi-arid basins. The changes in water content and human interventions have created Morphogenesis changes in playas which are identifiable in micro-landforms. In this research, Hoz-e Soltan with 330 km area in north of Qom Province is studied by Fractal modelling in order to determine the prevailing pattern on microforms. Research data were collected through field observations. In order to measure geometrical fractals, field observation was conducted in spring 2014 and 102 clay microforms were selected in May and October. 73 well-developed microforms were selected randomly and their dimensions were calculated and plotted accurately. The results showed that the calculated DAP based on circumference-area Fractal model includes values from 1.5 to 2.5 which suggests the intensity of clay microforms change and their tendency to the increase of chaos and irregularity. Logarithmic diagram of fractal model also shows that there is a linear relationship between circumference logarithm and landform logarithm, so that the resulted correlation coefficient R2 is larger than 0.98. Increase of chaos in Hoz-e Soltan playa implies its reaction to human intervention in harvesting mineral resources and irregularity in water content which could create hazardous results in this part of our country.



[1] بهرامی دراسله،ر، (1380)، ناحیه‌بندی بافت تصویر با استفاده از فراکتال­ها، پایان‌نامۀ کارشناسی ارشد، بخش مهندسی دانشگاه تربیت مدرس تهران.
[2] فتاحی، محمد مهدی (1391). بررسی ویژگی­های تالاب کویری حوض سلطان قم، سومین همایش ملی مقابله با بیابان‌زایی و توسعۀ پایدار تالاب‌های کویری ایران، اراک، دانشگاه آزاد اسلامی واحد اراک.
[3]قهرودی تالی، منیژه.میرزاخانی، بهاره، عسکری، آتنا (1391). پدیدۀ کویرزایی در تالاب‌های ایران، مطالعۀ موردی: تالاب میقان. جغرافیا و مخاطرات محیطی، شماره چهارم: 36-21.
[4] کرم، امیر (1389).نظریۀ آشوب، فراکتال(برخال) و سیستم‌های غیرخطی در ژئومورفولوژی، فصلنامۀ جغرافیای طبیعی، سال سوم، شمارۀ 8، تابستان.
[5] کلینسلی، دانیل. (1381). کویرهای ایران وخصوصیات ژئومورفولوژیکی وپالئوکلیماتولوژی آن، ترجمۀ عباس پاشائی،انتشارات سازمان جغرافیایی نیروهای مسلح، چاپ اول.
[6]Baas,A.C.W.(2002).”Chaos, fractals and self – organization in coastal eomorphology:simulating dune landscapes in vegetated environments”, geomorphology 48, pages 309-328.
[7]Cheng Q (1995) The perimeter–area fractal model and its application to geology. Math Geol 27(1):69–82.
[8]Cheng Q. (1994), Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the Mitchel-Sulphurets area, Northwestern British Columbia, Ph.D. thesis, University of Ottawa, Ottawa, 268 pp.
[9]Cheng Q, Russell H, Sharpe D, Kenny F, Qin P (2001) GIS-based statistical and fractal / multifractal analysis of surface stream patterns in the Oak Ridge’s Moraine. ComputGeosci 27(5):513–526.
[10]Goodchild MF (1988) Lake on fractal surfaces: a null hypothesis for lake-rich landscapes. Math Geol 20(6):15–630
[11] Lovejoy S (1982) Area–perimeter relation for rain and cloud areas. Science 216(4542):185–187
 [12] Lovejoy S, Schertzer D (1991) Multifractal analysis techniques and the rain and cloud fields from 10–3 Dordrecht, 318 p
[13] Mandelbrot BB (1983) The fractal geometry of nature (updated and augmented edition). Freeman, New York, 468 p.
[14]Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature308 (5961):721–722.
[15]Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004.Landslide inventories and their statistical properties. Earth Surface Processes and Landforms 29 (6), 687–711.
[16]VandenBerge, D. R. , Brandon, T. L., Duncan, J. M., Triaxial Tests on Compacted Clays for Consolidated-Undrained Conditions,Geotechnical Testing, ,Journal, 2014, 37, 4, 20130202
 [17] Wang Z, Cheng Q, Cao L et al (2006) Fractal modelling of the microstructure property of quartz mylonite during deformation process. Math Geol 39(1):53–68.
[18] Wang Z, Cheng Q, Xu D, Dong Y (2008) Fractal modeling of sphalerite banding in JindingPb–Zn deposit, Yunnan, Southwestern China. J China UnivGeosci 19(1):77–84.
[19]Zhang Z, Mao H, Cheng Q (2001) Fractal geometry of element distribution on mineral surface. Math Geol 33(2):217–228.
[20]Zuo R, Cheng Q , Xia Q (2009)Application of Fractal Models to Distinguish between Different Mineral Phases, Math Geosci  41: 71–80: DOI 10.1007/s11004-008-9191-3.