A Geostatistical Exploratory of Spatiotemporal Variation of Kerman’s Haloxylon and its Hazardous Effect in Formation of Dust Centers

Document Type : Applied Article

Authors

1 Assistant Professor of Geography, Payame Noor University, Qazvin, Iran

2 Associate Professor of Geology, Payame Noor University, Qazvin, Iran

3 MSc of Hydrogeomorphology, Shahid Beheshti University

Abstract

Dust and smooth-sands which rise up from aerosols resources have always extreme environmental and economic damages. Since 1961, development of artificial forest (Haloxylon species) has stabilized dust formation in the critical center of south and south east of Kerman. Some reports from vegetation degradation, prompted researchers to use integrative methods for monitoring and modeling the possible changes of the vegetation index. This research has used remotely sensed data (bands: 3 and 4, TM/ETM, Landsat) to obtain Normalized Difference Vegetation Index (NDVI) and studied spatiotemporal density changes of the artificial forest (according to Moran spatial autocorrelation index during the years 1987, 2000, 2005, 2009 and 2014). Meanwhile, for assessment of the role of drought effects in Haloxylon forest degradation, daily precipitation dataset of Kerman has been analyzed by using Effective Drought Index (EDI) during 1980 to 2013.  While, results show that the local average of NDVI has a meaningful decrease during the mentioned years, and the Moran index was increased and expanded the cluster patterns intensively. These changes represent some disorders in the initial linear structures of planted region as well as spotted Haloxylon trees. Expansion of droughts in association with human intervention increases the intense forest degradation in the borders of Tehran and Joopar roads. Indeed, the continuation of this process is hazardous, and considered as serious threat for developing the national plans such as Haftbagh-e-Alavi (east of region2).

Keywords


]1[ زهتابیان، غلامرضا؛ جوادی، محمدرضا؛ احمدی، حسن؛ آذرنیوند، حسین (1385). «بررسی اثر فرسایش بادی در افزایش شدت بیابان‌زایی و ارائة مدل منطقه‌ای بیابان‌زایی در حوضة آبخیز ماهان». مجلة پژوهش و سازندگی در منابع طبیعی، ش 73: 75-65.
]2[ شاهی، علی (1383). گزارش طرح تثبیت شن‌های روان کانون‌های ریزگرد کرمان، ادارة کل منابع طبیعی استان کرمان.
]3[ مشهدی، ناصر (۱۳۹۱). بررسی تغییرات کاربری اراضی در ارگ کرمان، اولین همایش ملی بیابان، تهران: مرکز تحقیقات بین‌المللی بیابان دانشگاه تهران.
]4[ معاونت نظارت راهبردی ریاست جمهوری (1393). ضوابط و معیارهای فنی احداث بادشکن بیولوژیک، سازمان جنگل‌ها، مراتع و آبخیزداری کشور، ضوابط شمارة 658.
]5[ هاشمی، زهره؛ جوادی، محمدرضا؛ میری، عباس (1389). «بررسی شدت فرسایش بادی و پتانسیل رسوب‌دهی حاصل از آن با استفاده از مدل IRIFR در منطقۀ زهکاستان سیستان و بلوچستان». فصلنامةعلوموفنونمنابعطبیعی، سال ششم، ش سوم: 41-31.
]6[ یمانی، مجتبی؛ ذهاب ناظوری، سمیه؛ گورابی، ابوالقاسم (1390). «بررسی مورفومتری و علل استقرار ریگ کرمان از طریق تحلیل ویژگی‌های باد و دانه‌سنجی ذرات ماسه». مجلۀ مطالعات جغرافیایی مناطق خشک. ش 4: 33-17.
[7]A.K. Bhandari, A. Kumar, (2012) “Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City”, Proceedings of Communication, Computing & Security. Procedia Technology Volume 6, pp. 612– 621.
[8] Anselin, L., (1995). Local indicators of spatial association, LISA, Geographical Analysis.
[9] Anselin, L., Syabri, I., Kho, Y., (2006). GeoDa: an introduction to spatial data analysis, Geogr Anal,V38, 5–22.
[10] Byun, H.R. and D.A. Wilhite, )1996(: Daily quantification of drought severity and duration. Journal of Climate 5: 1181–1201.
[11] Chang, H.J., (2007). Stream flow characteristics in urbanizing basins in the Portland Metropolitan Area Oregon, USA Hydrol. Process 21, 211-222.
[12] Cliff, A., Ord, J., (1981). Spatial processes, models and applications. Pion, London.
[13] Gates, David M. (1980) Biophysical Ecology, Springer-Verlag, New York, 611 p.
[14] George, S. S., (2007). Stream flow in the Winnipeg River basin, Canada: trends, extremes and climate linkages, J. Hydro 332, 396-411.
[15] Griffith, D.A., (1987). Spatial Autocorrelation: a primer. Association of American Geographers, Washington.
[16] Hagen, L. G. (1996). Crop Residue Effects on Aerodynamic Processes and Wind Erosion, Theoretical &Applied Climatology, 54, 39 –46.
[17] Hiroyuki Torita , Hajime Satou.(2007). Relationship between Shelterbelt Structure and Mean Wind Reduction. Agricultural and Forest Meteorology, Volume 145, Issues 3–4, Pages 186–194. http://dx.doi.org/10.1016/j.agrformet.2007.04.018
[18] Horning, L.B., Stetler, L.D., Saxton, K.E., (1998). Surface residue and soil roughness for wind erosion protection. Transactions of the American Society of Agricultural Engineers 41, 1061–1065.
[19] Juan, j.L., Xiang, R.W., Xin,J.W., Wei, C.M., Hao, Z., (2009). Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecological Complexity 6, 413-420.
 [20] Junran Li, Gregory S. Okin, Lorelei Alvarez, Howard Epstei,(2007), Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA, Biogeochemistry, vol:85, i:3, pages 317 - 332.
[21] John Tatarko a, , Michael A. Sporcic b, Edward L. Skidmore, (2010). A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System, Aeolian Research 10, 3–8. http://dx.doi.org/10.1016/j.aeolia.2012.08.004
[22] Lettenmaier, D. P., E. F. Wood, and J. R. Wallis, 1994: Hydro-climatological Trends in the Continental United States1948–88. J. Climate, 7: 586–607.
[23] Marshall JK (1971) Drag measurements in roughness arrays of varying density and distribution. Agric Meteorol 8:269–292
[24] Nageswara PPR, Shobha SV, Ramesh, KS, Somashekhar RK(2005),” Satellite -based assessment of Agricultural drought in Karnataka State, Journal of the Indian society of remote sensing “, 33 (3), pp. 429-434.
[25] O’Sullivan, D., Unwin, D. J., (2003). Geographic Information Analysis (Hoboken: Wiley).
[26] Skidmore, E. L. (1965). Assessing wind erosion forces: direction and relative magnitudes. soilsci. Am. proc. 29: 587 – 590.
[27] X, Dai., Z, Guo., L, Zhang., Dan, L., (2010). Spatiotemporal exploratory analysis of urban surface temperature field in Shanghai, China. Stoch Environ Res Risk Assess 24, 247–257.
[28] X. M. Wang, C.X. Zhang, E. Hasi, Z.B. Dong. (2010) Has the Three North Forest Shelterbelt Program Solved the Desertification and Dust Storm Problems in Arid and Semiarid China?. Journal of Arid Environments, vol:74, pp:13–22. http://dx.doi.org/10.1016/j.jaridenv.2009.08.001