Investigation of the Stream Geomorphology Hazards on of Trunk-Line Energy Transmittal by Using the Pipeline Risk Model (IGAT-9)

Document Type : Applied Article

Authors

1 Associate Professor, University of Tehran, Faculty of Geography

2 Professor,University of Tehran, Faculty of Geography

3 Professor, Polytechnic University of Valencia, Spain

4 PhD Student, University of Tehran, Faculty of Geography

Abstract

In recent years, valuable experiences have been gained in relation to environmental challenges, as well as pipeline risk management in the United States and Europe, in relation to the design and stabilization of pipelines, including the knowledge of geomorphological hazards, in particular the erosion hazards of the stream. It has helped to reduce the risk, and identify the response and response of the stream and rivers. In this paper, Pipeline Risk Screening Matrix studies the hazards of the geomorphology of the stream pipelines in the Iran gas trunk – line 9 (IGAT 9), in Khuzestan province. For this purpose, seven hydro-geomorphological data including scale, landscape sensitivity, stream type, riparian corridor, bank characteristics, bed characteristics and hydrologic regime were used. In the pipeline risk axis, three nominal scales include: Low risk, medium risk, and high risk were used to estimate the risk profile of the pipeline in relation to the increase or decrease of response and river responses. The results of this study showed that from the seven classes of the studied, the type stream is low-intermediate risk stream response and three classes, the riparian corridor, bed characteristics and hydrological regime are Medium risk. Bed characteristics and scale are medium-high risk and the landscape sensitivity high risk stream response. Overall, the class of risk stream response in IGAT 9, is medium – high risk stream response class.
Introduction
In the world, most of the research work on the hazards of pipelines (oil and gas pipelines) is in the United States, Canada and Russia, respectively. Also Western European countries, in particular the UK, have had research in this field. In Iran, pipeline failure or damage to the pipeline is eroded annually, for example, Rafsanjan-Naein-Esfahan oil pipeline (2013), Ray-Tabriz (2017). In Iran, there is no comprehensive study in which the geomorphological impact of the erosion damages to the pipelines unlike the long history (over 110 year records) of the oil and gas industry. In this paper, the purpose is to identify and assess of the risk stream response by using of pipeline risk screening axis relation to IGAT 9.
Method and result
In this paper we use of pipeline risk screening axis for estimate and identify of stream response risk class. This axis has seven criteria such as: scale, landscape sensitivity, stream type, riparian corridor, bank characteristics, bed characteristics and hydrologic regime. Pipeline risk screening axis classified into three categories, low risk, medium risk and high risk based on field data from seven criteria:
1) 50 river have point scale, 2 river reach scale, 4 rivers multi-reach and 4 rivers have watershed. 2) Landscape sensitivity have high risk reaction groups. 3) Stream type are two class include alluvial and bed rock. 4) Riparian corridor is 3 type of continuous – wide, semi continuous – wide and discontinuous – narrow. 5) bank characteristics have 3 type naturally non erodible, erosion resistant and highly erodible. 6) bed characteristics have 3 types boulder/cobble/clay bed, gravel /silt bed (dominate in case study) and sand bed. 7) hydrologic regime in our case study is rain and thunderstorm.
Conclusion
The results of this study showed that from the seven classes of the studied, the type stream is low-intermediate risk stream response and three classes, the riparian corridor, bed characteristics and hydrological regime are Medium risk. Bed characteristics and scale are medium-high risk, and the landscape sensitivity high risk stream response. Overall, the class of risk stream response in IGAT 9, is medium – high risk stream response class. For decrease of stream response risk, and improvement Iran gas trunk – line 9, it needs to tight management – engineering measurements, and Geomorphologically in case of erosion stream and restoration and review of project of rout line.

Keywords


[1].              آقانباتی، سید علی (1383). زمین‌شناسی ایران، تهران: انتشارات سازمان زمین‌شناسی و اکتشافات کشور.
[2].       احمدی، امیر (1391). مکانیسم شکل‌زای کواترنری بر روی ماسه‌سنگ آغاجاری در شمال غرب مسجدسلیمان، پایان‌نامۀ کارشناسی ارشد، دانشکدۀ جغرافیا، دانشگاه تهران.
[3].       احمدی، علی حسین (1393). شناسایی پهنه‌های آسیب‌پذیر مسیر خطوط انتقال نفت و گاز با تأکید بر پارامترهای ژئومورفولوژیکی (مطالعۀ موردی: محدودۀ شمال غربی مسجدسلیمان)، پایان‌نامۀ کارشناسی ارشد، دانشگاه خوارزمی، گروه جغرافیای طبیعی.
[4].              تهرانی، خسرو (1384). زمین‌شناسی ایران (مزوزوئیک و سنوزوئیک)، کلیدر.
[5].       حسینی، داریوش؛ حکیم‌زاده، حبیب؛ و یاثی، رضا (1385). «بررسی مسائل آب‌شستگی موضعی در اطراف خطوط لوله با استفاده از مدل‌های عددی و فیزیکی»، نشریۀ مهندسی دریا، سال سوم، ش 5.
[6].              سایت شرکت خطوط لوله و مخابرات نفت ایران (1396) . WWW.IOPTC.IR
[7].       گلبهار حقیقی، مهدی؛ و علی‌اکبر آقا کوچک (1385). «تحلیل خطوط لوله دریایی تحت بارگذاری ناشی از انتشار موج زلزله و حرکت گسل»، نشریۀ مهندسی دریا، سال سوم، ش 5.
[8].              مقیمی، ابراهیم (1389). ژئومورفولوژی ایران، تهران: انتشارات دانشگاه تهران.
[9].              مطیعی، همایون (1372). زمین‌شناسی ایران: چینه‌شناسی زاگرس، انتشارات سازمان زمین‌شناسی کشور.
[10].     مرادی، سبحان؛ اسماعیلی، کاظم؛ اکبرزاده، محمدرضا؛ و خداشناسی سعید (1395). «بررسی تأثیر پیگیبک لاین بر آب‌شستگی موضعی زیر خطوط لولۀ افقی»، نشریۀ پژوهش‌های حفاظت آب‌وخاک، ج 23، ش 6.
[11].     هدایت بهرامی، پریا؛ کاتورانی، سید ساسان؛ زاده دلیر، علی حسین؛ و فرسادی‌زاده، داود (1395). «مطالعۀ آزمایشگاهی تأثیر زاویۀ برخورد جریان در آب‌شستگی زیر لوله‌های مستغرق»، نشریۀ دانش آب‌وخاک، ج 2، ش 4، ص 133-123.
[12].            Ahmadi, E. Moghimi, S. M. Zamanzadeh and R. Motamed. (2015) “The Effect of Sandstone Composition on Distribution of Tafoni Landforms in the Aghajari Sandstone, Northwest of Masjed Soleyman, Iran”. Hindawi Publishing Corporation Advances in Geology. Volume 2015, Article ID 862714, 10 pages.
[13].            BP. (2005). “International conference on: Terrain and geohazard challenges facing onshore oil and gas pipelines”. ISBN: 9780727732781.
[14].            Castro. J. M., (2010). “Pipelines & Stream Crossings: a new tool for determining relative risk”. Presented at: Department of the Interior, Conference on the Environment, April 26th – 30th, 2010,
[15].            Castro. J.M., (2011). “Should I be concerned? Screening projects using RiverRAT”. Presented at: Salmon Recovery Funding Board, Salmon Recovery Conference, April 26th – 27th, 2011, Grand Mound,Washington.
[16].            City of Portland. (2001). “Johnson Creek Restoration Plan. Bureau of Environmental Services”. 1120 SW Fifth Ave., Portland, Oregon 97204, USA, 257p. Available at: http://www.portlandoregon.gov/bes/article/
[17].            Cluer. B, Thorne. C. R., (2013). “A Stream Evolution Model Integrating Habitat and Ecosystem Benefits”. River Science and Applications, DOI: 10.1002/ rra.2631.
[18].            Cluer. B, Thorne. C. R, Castro. J.M., Pess G, Beechie T, Shea C, Skidmore. P., (2010).” Tools and Science Base for Evaluating Stream Engineering”, Management, and Restoration Proposals, Proceedings of the Federal Interagency Sediment Conference 2010, Las Vegas, Nevada (June 2010).
[19].            C. Thorne., J. Castro., B. Cluer., P. Skidmore and C. Shea., (2015). “Project risk screening matrix for river management and restoration”. River research and applications. River Res. Applic. 31: 611–626.
[20].            Joint Research Centre. Serkan Girgin, Elisabeth Krausmann., (2015). “Lessons learned from oil pipeline natech accidents and recommendations for natech scenario development. Institute for the Protection and Security of the Citizen”. Elisabeth Krausmann. Address: Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy.
[21].            M. Glass, Kendra Hatcher, Meghan Betcher, and Evan Hansen., (2016). “Guidance for Monitoring Effects of Gas Pipeline Development on Surface Water and Groundwater Supplies”. Published by downstream strategy.
[22].            Montgomery. D. R., and J. M. Buffington. (1998). “Channel processes, classification, and response”. In R. J. Naiman and R. E. Bilby (eds.), River ecology and management: Lessons from the Pacific coastal ecoregion, p. 13–42. Springer, New York.
[23].            . Munier.,N (2014). Risk management for engineering projects. Springer, Pp. 220.
[24].            Peter B. Skidmore, Colin R. Thorne, Brian L. Cluer, George R. Pess, Janine M. Castro, Timothy J. Beechie, and Conor C. Shea. (2011). “Science Base and Tools for Evaluating Stream Engineering, Management, and Restoration Proposals”. NOAA Technical Memorandum NMFS-NWFSC-112.
[25].            Rizkalla, M., (2008). “Pipeline geo-environmental design and geohazard management American Society of Mechanical Engineers (ASME)”. New York, USA. pp 360.
[26].            Sakhalin Energy Investment Company LTD., (2003). “Comparative Environmental Analysis of the Piltun-Astokh Field Pipeline Route Options”. BM Code: EP.17.03.07.03.
[27].            Veldman. W.M., (1983). “Arctic Pipeline River Crossings, Design Trends and Lessons Learned.” Prepared for the American Society of Civil Engineers, Specialty Conference on Pipelines in Adverse Environments, San Diego, California.