Investigation of the effect of plan geometry and curvature of the building body on the seismic behavior of tall buildings by using hexagrid structure

Document Type : Applied Article


1 Iran university of science and technology

2 associate professor/ Iran university of science and technology. school of architecture

3 assistant professor/ Islamic azad university of Roudehen


The geometric shape of the building, both in plan and in height, influences seismic behavior. Furthermore, the form of the building is very important in terms of aesthetic issues and the function of the building in architecture. so, if the form of the building can be designed in such a way that not only responds to the architectural features of the building, but also performs better in terms of structure (seismic behavior), it will be possible to achieve these two goals simultaneously. Also, less attention has been given to the geometry and plan capabilities of the building for seismic stability. Therefore, in this article, in addition to considering architectural constraints such as the area of the central core and floors, building height, free plan and appropriate light depth in the floors, by making changes in the shape of the building body in height and plan, to compare its seismic behavior. Furthermore, by creating appropriate forms, which could achieve the needs of architecture and building structures and make the design economical. For this purpose, 70-storey hexagrid buildings structure with three shapes of circle, pentagon and triangle in plan and three different forms in in height cylindrical forms, convex and concave, with the same total area, have been studied. The research is quantitative and the modeling of forms has been done by the Rhino software through the analysis of structural models in the SAP 2000 software. Based on the obtained results, it can be stated that, by reducing the number of sides of the plan in convex sections, the total weight is reduced by 11.4% and the base shear is reduced by 10%, while with increasing the number of sides of the plan in concave sections, the total weight is reduced by 5% and the amount of base shear There is no significant difference with increasing or decreasing the number of sides of the plan


[1]. اردکانی، امیررضا؛ گلابچی، محمود؛ حسینی، محمود؛ و علاقمندان، متین (1396). بررسی تأثیر فرم ساختمان‌های بلند بر پایداری سازه‌ای آنها با هدف کاهش مخاطرات زلزله (نمونۀ موردی: تأثیر پارامتر شکل پلان)، مدیریتمخاطراتمحیطی، دورۀ 4، شمارۀ 1، ص 42-27.
[2]. امبرسیز، نیکولاس؛ و ملویل، چارلز پیتر (1370). تاریخزمین‌لرزه‌هایایران، ترجمة ابوالحسن رده، تهران.
[3]. امینی، الهام (1384). «تبیین مفهوم بافت شهری و نقش آن در کاهش خطرات ناشی از زلزله»، مجموعه مقالات کنفرانس بین‌المللی مخاطرات زمین، بلایای طبیعی و راهکارهای مقابله با آنها»، دانشگاه تبریز، 5 تا 7 مهر.
[4]. چارلسون، اندرو (1389). طراحیلرزه‌ایبرایمعماران، مقابله‌ایهوشمندانه با زلزله، ترجمۀ محمود گلابچی و احسان سروش‌نیا، تهران: انتشارات دانشگاه تهران.
[5]. شولر، ولفگانگ (1977) سازه‌هایساختمان بلند. ترجمة حجت‌الله عادلی. چ پنجم، تهران: دهخدا.
[6]. صفوی، سید‌یحیی (1380). «ملاحظاتی بر بلندمرتبه‌سازی در تهران: ساختمان‌های بلندمرتبه در تهران»، رشد آموزش جغرافیا، شمارۀ 85، ص 29-18
[7]. گلابچی، محمود؛ و گلابچی، محمدرضا (1392). مبانی طراحی ساختمان‌های بلند، تهران: انتشارات دانشگاه تهران.
[8]. مقیمی، ابراهیم (1393). دانشمخاطرات (برایزندگیبا کیفیتبهتر)، چ دوم. تهران: انتشارات دانشگاه تهران.
[9]. Alaghmandan, M.; & Elnimeiri, M. (2013). “Reducing Impact of Wind on Tall Buildings through Design and Aerodynamic Modifications (Architectural and Structural Concepts to Mitigate Wind Effect on Tall Buildings)”, Architectural Engineering Conference 2013 (AEI). Pennsylvania State University, State College, Pennsylvania, USA. Published by ASCE.       
[10]. Amin, J.A.; & Ahuja, A.K. (2010). “Aerodynamic Modifications to the Shape of the Buildings: A Review of the State-Of-The-Art”, Asian Journal of Civil Engineering (Building and Housing), Vol. 11, 4:433-450.   
[11]. Ardekani, A.; Dabbaghchian, I.; Alaghmandan, M.; Golabchi, M.; Hosseini S. M. & Mirghaderi S. R. (2020) “Parametric design of diagrid tall buildings regarding structural efficiency”, Architectural Science Review, 63:1, 87-102, DOI: 10.1080/00038628.2019.1704395
[12]. Dickson, T. R. (1995). Introduction to chemistry (7 ed.). New York: John Wiley &Sons, Inc. 
[13]. De Meijer, J. (2012). “Hexagonal structure used as structural stability system”, Study of Literature. Eindhoven: Eindhoven University of Technology.          
[14]. Geim, A. K.; & Novoselov, K. S. (2007). “The rise of graphene”, Nature materials, Vol. 6, 183-191.           
[15]. Harris, P. J. (1999). Carbon Nanotubes and Related Structures, Cambridge: Cambridge University Press.      
[16]. HTA, A. (2010). Honeycomb Tube Architecture Technology (Volume III), Tokyo: Shinenchiku-sha.  
[18]. Ju, J.; & Summers, J. D. (2011). “Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain”, Materials and design, 32, 512-524.      
[19]. Jani, K.; & Patel, P. (2013). “Analysis and Design of Diagrid Structural System for High Rise Steel Buildings”, Chemical, Civil and Mechanical Engineering Tracks of 3rd Nirma University International Conference on Engineering (NUiCONE-2012), Procedia Engineering 51 (2013) 92 – 100    
[20]. Khan, R.; & Shinde, S.B. (2015). “Analysis of Diagrid Structure in Comparison with Exterior Braced Frame Structure”, IJRET: International Journal of Research in Engineering and Technology, Volume: 04 Issue: 12.
[21]. Moon, K. (2008). “Material Saving Design Strategies for Tall Buildings Structures”, CTBUH 8th World Congress, 2008.
[22]. Montouri, M.; Fadda, M.; & Mele, E. (2015). “Hexagrid_hexagonal tube structures for tall buildings: patterns, modeling and design”. The Structural Design of Tall and Special Buildings. New York: John Wiley & Sons.    
[23]. Moon, K. (2012). “Sustainable Structural Design of Contemporary Tall Buildings of Various Forms”, CTBUH 2012 9th World Congress, Shanghai
[24]. SAP2000. Structural Analysis Program, Computer and Structures: Berkeley, CA.
[25]. Taranath, B.S. (1988). Structural Analysis & Design of Tall Buildings, Published by McGraw Hill. 
[26]. Wang, A. J.; & McDowell, D. L. (2004). “In-plane stiffness and yield strength of periodic metal honeycombs”, Journal of Engineering Materials and Technology, 126, 137-156.    
[27]. Wang, A. J.; & McDowell, D. L. (2004). “In-plane stiffness and yield strength of periodic metal honeycombs”, Journal of Engineering Materials and Technology, 126, 137-156.