[1] Achakulwisut, P., Anenberg, S. C., Neumann, J. E., et al. Effects of increasing aridity on ambient dust and public health in the US Southwest under climate change. GeoHealth, 3(5), 127-144. (2019)
[2] Aeronautics, N., & Laboratory, S. A. J. P. (2020). Nasadem merged dem global 1 arc second v001 [data set]. NASA EOSDIS Land Processes DAAC.
[3] Al-Abadi, A. M., Al-Temmeme, A. A., & Al-Ghanimy, M. A. (2016). A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustainable Water Resources Management, 2, 265-283.
[4] Al-Taei, A. I., Alesheikh, A. A., & Darvishi Boloorani, A. (2023). Land Use/Land Cover Change Analysis Using Multi-Temporal Remote Sensing Data: A Case Study of Tigris and Euphrates Rivers Basin. Land, 12(5), 1101.
[5] Al Ameri, I. D., Briant, R. M., & Engels, S. (2019). Drought severity and increased dust storm frequency in the Middle East: a case study from the Tigris–Euphrates alluvial plain, central Iraq. Weather, 74(12), 416-426.
[6] Alsubhi, Y., Qureshi, S., & Siddiqui, M. H. (2023). A New Risk-Based Method in Decision Making to Create Dust Sources Maps: A Case Study of Saudi Arabia. Remote Sensing, 15(21), 5193.
[7] Aniya, M. (1985). Landslide-susceptibility mapping in the Amahata river basin, Japan. Annals of the Association of American Geographers, 75(1), 102-114.
[8] Bank, W. (2019). Sand and Dust Storms in the Middle East and North Africa Region: Sources, Costs, and Solutions: World Bank.
[9] Beyranvand, A., Azizi, G., Alizadeh, O., & Darvishi Boloorani, A. (2023). Dust in Western Iran: the emergence of new sources in response to shrinking water bodies. Scientific reports, 13(1), 16158.
[10] Boloorani, A. D., Ranjbareslamloo, S., Mirzaie, S., Bahrami, H. A., Mirzapour, F., & Tehrani, N. A. (2020). Spectral behavior of Persian oak under compound stress of water deficit and dust storm. International journal of Applied earth Observation and Geoinformation, 88, 102082.
[11] Boloorani, A. D., Samany, N. N., Papi, R., & Soleimani, M. (2022). Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery. Catena, 209, 105795.
[12] Boloorani, A. D., Soleimani, M., Papi, R., et al. (2024). Assessing the role of drought in dust storm formation in the Tigris and Euphrates basin. Science of The Total Environment, 171193.
[13] Boroughani, M., Mirchooli, F., Hadavifar, M., & Fiedler, S. (2023). Mapping land degradation risk due to land susceptibility to dust emission and water erosion. Soil, 9(2), 411-423.
[14] Branco, P., Torgo, L., & Ribeiro, R. P. (2017). SMOGN: a pre-processing approach for imbalanced regression. Paper presented at the First international workshop on learning with imbalanced domains: Theory and applications.
[15] Briceño-Zuluaga, F., Castagna, A., Rutllant, J. A., et al. (2017). Paracas dust storms: Sources, trajectories and associated meteorological conditions. Atmospheric Environment, 165, 99-110.
[16] Darvishi Boloorani, A., Kazemi, Y., Sadeghi, A., Shorabeh, S. N., & Argany, M. (2020). Identification of dust sources using long term satellite and climatic data: A case study of Tigris and Euphrates basin. Atmospheric Environment, 224, 117299.
[17] Darvishi Boloorani, A., Papi, R., Soleimani, M., et al. (2023). Visual interpretation of satellite imagery for hotspot dust sources identification. Remote Sensing Applications: Society and Environment, 29, 100888.
[18] Darvishi Boloorani, A., Papi, R., Soleimani, M., Karami, L., Amiri, F., & Samany, N. N. (2021). Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeolian Research, 50, 100698.
[19] Das, B., Mukherjee, V., & Das, D. (2020). Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems. Advances in Engineering software, 146, 102804.
[20] Ding, Q., Liu, X., & Zhang, X. (2014). Impacts of water level fluctuations on substrate environments of lakeshore zone of the lakes in the middle and lower reaches of the Yangtze River. Journal of Lake Science, 26(3), 340-348.
[21] Eleftheriou, A., Mouzourides, P., Biskos, G., Yiallouros, P., Kumar, P., & Neophytou, M. K.-A. (2023). The challenge of adopting mitigation and adaptation measures for the impacts of sand and dust storms in Eastern Mediterranean Region: a critical review. Mitigation and Adaptation Strategies for Global Change, 28(6), 33.
[22] Farhangi, F., Sadegh-Niaraki, A., Razavi-Termeh, S. V., & Nahvi, A. (2023). Driver drowsiness modeling based on spatial factors and electroencephalography using machine learning methods: A simulator study. Transportation Research Part F: Traffic Psychology and Behaviour, 98, 123-140.
[23] Feng, Y., Long, H., Yang, F., Yang, F., Cheng, H., & Zhang, G. (2023). Warmth Favored Dust Activities on the Northeastern Qinghai‐Tibet Plateau. Geophysical research letters, 50(11), e2023GL103781.
[24] Furman, H. K. H. (2003). Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor and Built Environment, 12(6), 419-426.
[25] Gholami, H., Mohamadifar, A., Sorooshian, A., & Jansen, J. D. (2020). Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmospheric pollution research, 11(8), 1303-1315.
[26] Hamidi, M. (2020). The key role of water resources management in the Middle East dust events. Catena, 187, 104337.
[27] Hengl, T. (2018). Soil texture classes (USDA system) for 6 soil depths (0, 10, 30, 60, 100 and 200 cm) at 250 m (Version v02)[Data set]. Zenodo.
[28] Jafari, R., Amiri, M., Asgari, F., & Tarkesh, M. (2022). Dust source susceptibility mapping based on remote sensing and machine learning techniques. Ecological Informatics, 72, 101872.
[29] Jish Prakash, P., Stenchikov, G., Kalenderski, S., Osipov, S., & Bangalath, H. (2015). The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmospheric Chemistry and Physics, 15(1), 199-222.
[30] Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609-629.
[31] Khaniabadi, Y. O., Daryanoosh, S. M., Amrane, A., et al. (2017). Impact of Middle Eastern Dust storms on human health. Atmospheric pollution research, 8(4), 606-613.
[32] Li, J., Garshick, E., Huang, S., & Koutrakis, P. (2021). Impacts of El Niño-Southern Oscillation on surface dust levels across the world during 1982–2019. Science of The Total Environment, 769, 144566.
[33] Li, J., Li, C., & Zhang, S. (2022). Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction. Applied Soft Computing, 131, 109729.
[34] Liu, R., Li, G., Wei, L., et al. (2022). Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms. Journal of Hydrology, 610, 127977.
[35] Liu, Y., Wang, G., Hu, Z., et al. (2020). Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China. Atmospheric Research, 243, 105031.
[36] McNally, A. (2018). FLDAS Noah Land Surface Model L4 Global Monthly 0.1× 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC).
[37] Mengmeng, Z., & Yian, L. (2018). Signal sorting using teaching-learning-based optimization and random forest. Paper presented at the 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES).
[38] Moniz, N., Branco, P., & Torgo, L. (2017). Evaluation of ensemble methods in imbalanced regression tasks. Paper presented at the First International Workshop on Learning with Imbalanced Domains: Theory and Applications.
[39] Munkhtsetseg, E., Shinoda, M., Gillies, J. A., Kimura, R., King, J., & Nikolich, G. (2016). Relationships between soil moisture and dust emissions in a bare sandy soil of Mongolia. Particuology, 28, 131-137.
[40] Naghibi, A., Hashemi, H., Zhao, P., et al. (2024). Spatiotemporal variability of dust storm source susceptibility during wet and dry periods: The Tigris-Euphrates River Basin. Atmospheric pollution research, 15(1), 101953.
[41] Neelamani, S., & Al-Dousari, A. (2016). A study on the annual fallout of the dust and the associated elements into the Kuwait Bay, Kuwait. Arabian Journal of Geosciences, 9, 1-11.
[42] Okin, G. S. (2022). Where and how often does rain prevent dust emission? Geophysical research letters, 49(4), e2021GL095501.
[43] Parajuli, S. P., Yang, Z. L., & Kocurek, G. (2014). Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing. Journal of Geophysical Research: Earth Surface, 119(9), 1977-1994.
[44] Park, S., Hamm, S.-Y., Jeon, H.-T., & Kim, J. (2017). Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability, 9(7), 1157.
[45] Peng, Y. (2022). Application of Educational Psychology Based on Improved SPBO Optimization Algorithm in English Learning. Frontiers in Psychology, 13, 949568.
[46] Pourhashemi, S., Asadi, M. A. Z., Boroughani, M., & Azadi, H. (2023). Mapping of dust source susceptibility by remote sensing and machine learning techniques (case study: Iran-Iraq border). Environmental Science and Pollution Research, 30(10), 27965-27979.
[47] Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720.
[48] Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-aided design, 43(3), 303-315.
[49] Razavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S.-M. (2019). Groundwater potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water, 11(8), 1596.
[50] Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Seo, M., & Choi, S.-M. (2023). Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery. Science of The Total Environment, 873, 162285.
[51] Sarzaeim, P., Bozorg-Haddad, O., & Chu, X. (2018). Teaching-learning-based optimization (TLBO) algorithm. Advanced optimization by nature-inspired algorithms, 51-58.
[52] Shao, Y. (2008). Physics and modelling of wind erosion: Springer.
[53] Shogrkhodaei, S. Z., Razavi-Termeh, S. V., & Fathnia, A. (2021). Spatio-temporal modeling of PM2. 5 risk mapping using three machine learning algorithms. Environmental Pollution, 289, 117859.
[54] Speer, M. S. (2013). Dust storm frequency and impact over Eastern Australia determined by state of Pacific climate system. Weather and Climate Extremes, 2, 16-21.
[55] Strong, J. D., Vecchi, G. A., & Ginoux, P. (2015). The response of the tropical Atlantic and West African climate to Saharan dust in a fully coupled GCM. Journal of Climate, 28(18), 7071-7092.
[56] UNCCD. (2022). Sand and dust storms compendium: Information and guidance on assessing and addressing the risks: United Nations Convention to Combat Desertification.
[57] Wang, N., Chen, J., Zhang, Y., Xu, Y., & Yu, W. (2023). The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021). Remote Sensing, 15(2), 410.
[58] Wang, W., Samat, A., Abuduwaili, J., De Maeyer, P., & Van de Voorde, T. (2023). Machine learning-based prediction of sand and dust storm sources in arid Central Asia. International Journal of Digital Earth, 16(1), 1530-1550.
[59] Willmott, C. J., Ackleson, S. G., Davis, R. E., et al. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995-9005.
[60] WMO. (1995). Manual on Codes – International Codes. WMO Report No.306, Geneva, Switzerland.
[61] Wu, C., Lin, Z., Shao, Y., Liu, X., & Li, Y. (2022). Drivers of recent decline in dust activity over East Asia. Nature Communications, 13(1), 7105.
[62] Wu, D., Wang, S., Liu, Q., Abualigah, L., & Jia, H. (2022). An improved teaching-learning-based optimization algorithm with reinforcement learning strategy for solving optimization problems. Computational Intelligence and Neuroscience, 2022.
[63] Xu, C., Guan, Q., Lin, J., et al. (2020). Spatiotemporal variations and driving factors of dust storm events in northern China based on high-temporal-resolution analysis of meteorological data (1960–2007). Environmental Pollution, 260, 114084.
[64] Xue, R., & Wu, Z. (2019). A survey of application and classification on teaching-learning-based optimization algorithm. IEEE Access, 8, 1062-1079.
[65] Yadav, R., & Kaur, M. (2024). Teaching learning based optimization-a review on background and development. AIP Conference Proceedings, 2986(1).
[66] Zhang, J., Huang, Y., Wang, Y., & Ma, G. (2020). Multi-objective optimization of concrete mixture proportions using machine learning and metaheuristic algorithms. Construction and Building Materials, 253, 119208.
[67] Zhao, C., Dabu, X., & Li, Y. (2004). Relationship between climatic factors and dust storm frequency in Inner Mongolia of China. Geophysical research letters, 31(1).
[68] Zucca, C., Middleton, N., Kang, U., & Liniger, H. (2021). Shrinking water bodies as hotspots of sand and dust storms: The role of land degradation and sustainable soil and water management. Catena, 207, 105669.