بهبود نتایج پیش‌بینی وقوع زمین‌لغزش با استفاده از تئوری انتروپی شانون

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 دانشجوی دکتری مهندسی سیستم‌های اطلاعات مکانی، گروه مهندسی نقشه‌برداری، پردیس دانشکده‌های فنی دانشگاه تهران

2 استادیار گرایش مهندسی سیستم‌های اطلاعات مکانی، گروه مهندسی نقشه‌برداری، پردیس دانشکده‌های فنی دانشگاه تهران

چکیده

مرور خسارات ناشی از زمین‌لغزش، لزوم بررسی پارامترهای مؤثر بر آن و پیش‌بینی وقوع آن را به اثبات می‌رساند. بر این اساس هدف از پژوهش حاضر بهبود نتایج پیش‌بینی وقوع زمین‌لغزش در منطقۀ توتکابن استان گیلان است. به‌همین منظور تئوریانتروپی شانون برای مدلسازی و لحاظ عدم قطعیت داده‌ها انتخاب شد. همچنین پارامترهای شیب، ارتفاع، شرایط ژئومورفولوژی، انحنای زمین، نزدیکی به رودخانه و نزدیکی به گسل‌ها، به‌عنوان عوامل مؤثر بر وقوع زمین‌لغزش به‌کار گرفته شدند. با استفاده از تئوری انتروپی شانون، وزن هر یک از پارامترها به‌همراه تأثیر عدم قطعیت بر نتایج محاسبه و نقشۀ ریسک وقوع زمین‌لغزش برای منطقۀ تحقیق تهیه شد. در نهایت برای ارزیابی نتایج از مقایسۀ موقعیت نقاط وقوع زمین‌لغزش در منطقۀ تحقیق و نقشۀ ریسک مدلسازی‌شده، استفاده شد. با ارزیابی نتایج مقدار 69/0 برای مساحت زیر منحنی (AUC) نمودار نرخ پیش‌بینی با در نظر گرفتن انتروپی و مقدار 54/0 برای بدون در نظر گرفتن انتروپی به‌دست آمد.

کلیدواژه‌ها


  1.  

     

    1. Akgun, Aykut. (2011). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at _Izmir, Turkey. Landslides. Article on-line first available. doi:10.1007/s10346-011-0283-7.
    2. Althuwaynee, Omarl Pradhan Biswajeet., Lee Sung. ( 2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44 (120–135).
    3. Bui, Dieu; Tien, Lofman; Owe, Revhaug; Inge, Dick, Oystein. (2011). Landslide susceptibility analysi in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards. 59 (3), 1413–1444.
    4. Ballabio, Cristiano; Sterlacchini, Simone. (2012). Support vector machines for landslide suscept-ibility mapping: the Staffora River Basin case study, Italy. Mathematical Geosciences. 1–24.
    5. Chauhan, Shivani; Sharma, Mukta.; Arora, M. K. ( 2010). Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Land-slides. 7, 411–423.
    6. Caniani, Donatella; Pascale, Stefania; Sdao, Francesco; Sole, Aurelia. (2008). Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Natural Hazards. 45(1), 55–72.
    7. Dahal, Ranjan kumar; Hasegawa, Suichi; Nonomura, Atsuko; Yamanaka, Minoru; Masuda, Takuro; and Nishino Katsuhiro. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping, Environ Geol. 54:311–324.
    8. Devkota, Krishna; Chandra  Regmi, Amar, Deep; Pourghasemi, Hamid. Reza; Yoshida Kohki, Pradhan, Biswajeet, Ryu, In. Chang; Dhital, Megh. Raj; and Althuwaynee, Omar. F. ( 2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya, Nat Hazards. 65:135–165.
    9. Ermini, Leonardo; Catani, Filippo; Casagli, Nicola. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology. 66 (1–4), 327–343.
    10. Felicísimo, Angel; Cuartero, Aurora; Remondo Juan; and Quirós, Elia. (2012). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study, Landslides. 10:175–189.
    11. Gomez,Hector ; Kavzoglu, Taskin. (2005). Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology. 78 (1–2). 11–27.
    12. Kayastha, Prabin; Dhital, Megh Raj; De Smedt, Florimond . (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal, Computers & Geosciences, 52:398–408.
    13. Lallianthanga, R.K.; Lalbiakmawia F; and Lalramchuana, F. ( 2013). landslide hazard zonation of mamit town, mizoram, india using remote sensing and gis techniques, nternational journal of geology, earth and environmental sciences,  3 (1),184-194.
    14. Ozdemir, Adnan. (2011). Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains (Aksehir, Turkey), Nat Hazards. 59:1573–1607.
    15. Pourghasemi Hamid. Reza; Mohammady Majid;  Pradhan, Biswajeet. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran, Catena. 97: 71 –84.
    16. Pradhan, Biswajeet. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320.
    17. Pasha E; Mostafavi H;  Khalaj M;  Khalaj F. (2013). Calculate  the  Uncertainty  Interval  Based  on  Entropy and Dempster Shafer Theory of Evidence, International Journal of Industrial Engineering & Production Management, 24: 215-223.
    18. Quan, He-Chun; Lee, Byung-Gul. (2012). GIS-Based Landslide Susceptibility Mapping Using Analytic Hierarchy Process  and Artificial Neural Network in Jeju (Korea), KSCE Journal of Civil Engineering, 16(7):1258-1266.
    19. Sharma, L. P;  Patel, Nilanchal; Ghose M. K; and Debnat P. (2012). Influence of Shannon ’s entropy on landslide-cau sing parameter s for vulnerab ility study and zonation — a case study in Sikkim, India, Arab J Geosci. 5:421– 431.
    20. Shafer, Glenn. (1976). A Mathematical Theory of Evidence. Princeton University. Press297 pp.
    21. Wu, Yiping; Chen, Lixia; Cheng, Cong, Yin; Kunlong, T¨or¨ok, ´A. (2014).GIS-based landslide hazard predicting system and its real-time test dur-ing a typhoon, Zhejiang Province, Southeast China, Engineering Geology. doi: 10.1016/j.enggeo.03.005.
    22. Wu, Xueling; F, Ruiqing Niu; Ling Peng, Ren. (2013). Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China, Environmental Earth Sciences, doi 10.1007/s12665-013-2217-2.
    23. Yılmaz, lion. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey), Computers & Geosciences, 35 (6), 1125–1138.
    24. Yao, X; Tham, L.G; Dai, Fuchu. (2008). Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China.Geomorphology 101, 572–582.