[1]. قانع، علیرضا؛ مظاهری، مهدی؛ و محمدولی سامانی، جمال. (1395). «کاربرد مدل احتمال برگشتی در ردیابی منابع آلاینده در رودخانه در شرایط وجود جریان غیریکنواخت»،
محیطشناسی،(42:2)، 410-397.
10.22059/JES.2016.58742
[2]. قانع، علیرضا؛ مظاهری، مهدی؛ و محمدولی سامانی، جمال. (1396). «ردیابی مکان و زمان رهاسازی آلاینده در رودخانه براساس مدل ترکیبی آنالیز الحاقی و بهینهسازی»، مهندسی عمران شریف، (33.2:3.2)، 104-95. 10.24200/J30.2017.20111
[3]. Aster, R.C.; Borchers, B.; & Thurber, C.H. (2005). Parameter Estimation and Inverse Problems. San Diego, Elsevier Academic Press. ISBN: 9780123850492.
[4]. Atmadja, J.; & Bagtezoglou, A.C. (2001). “pollution source identification in heterogeneous porous media”,
Water Resources Reasearch, 37(8): 2113-2125.doi:
10.1029/2001WR000223 .
[5]. Bagtzoglou, A.C.; & Atmadja, J. (2003). “Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery”,
Water Resources Research, 39(2). doi:
10.1029/2001WR001021
[6]. Chapra, S.C. (1997). Surface water-quality modeling, Vol. 1, McGraw-Hill New York. ISBN: 0070113645.
[7]. Cheng, W.P. & Jia, Y. (2010). “Identification of contaminant point source in surface waters based on backward location probability density function method”, Advances in Water Resources, 33(4): 397-410. doi: 10.1016/j.advwatres.2010.01.004.
[8]. Colaco, M.J.; Orlanda, H.R.B.; & Dulikravich, G.S. (2006). “Inverse and optimization problems in heat transfer”, Journal of Brazilian Society of Meachanical Sciences and Engineering, vol. 28, no .1, pp. 1-24. doi: 10.1590/S1678-58782006000100001.
[9]. El Badia, A.; Ha-Duong, T.; & Hamdi, A. (2005). “Identification of a point source in a linear advection–dispersion–reaction equation: application to a pollution source problem”,
Inverse Problems, 21 (2005) 1-17. doi:
10.1088/0266-5611/21/3/020.
[10]. Ghane, A.; Mazaheri, M.; & Mohammad Vali Samani, J. (2016). Location and release time identification of pollution point source in river networks based on the Backward Probability Method. J Environ Manage, (180)164-171. doi: 10.1016/j.jenvman.2016.05.015.
[11]. Hamdi, A. (2009). “The recovery of a time-dependent point source in a linear transport equation: application to surface water pollution”,
Inverse Problems, 25(7): 075006. doi:
10.1088/0266-5611/25/7/075006.
[12]. Hamdi, A.; & Mahfoudhi, I. (2013). “Inverse source problem in a one-dimensional evolution linear transport equation with spatially varying coefficients: application to surface water pollution”,
Inverse Problems in Science and Engineering, 21(6): 1007-1031. doi:
10.1080/17415977.2013.764871.
[13]. Hamdi, A.; Mahfoudhi, I.; & Rejaiba, A. (2015). “Identification of time active limit with lower and upper bounds of total amount loaded by unknown sources in 2D transport equations”, Journal of Engineering Mathematics, 97(1): 101-117. doi: 10.1007/s10665-015-9799-5.
[14]. Hamdi, A. (2012). “Inverse source problem in a 2D linear evolution transport equation: detection of pollution source”,
Inverse Problems in Science and Engineering, 20(3): 401-421. doi:
10.1080/17415977.2011.637207.
[15]. Hansen, P.C., (1997). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Philadelphia: Siam.
[16]. Ling, L.; Yamamoto, M.; Hon Y. C.; & Takeuchi, T. (2006). “Identification of source locations in two-dimensional heat equations”,
Inverse Problems in Science and Engineering, 22(4): 591-608. doi:
10.1088/0266-5611/22/4/011.
[17]. Michalak, A.M.; & Kitanidis, P.k. (2004). “Estimation ofhistorical groundwater contaminant distribution using the adjont state method applied to geostatistical inverse modeling”, Water Resources Research, Vol. 40, W08302. doi: 10.1029/2004WR003214.
[18]. Milnes, E.; & perrochet, P. (2007). “Simultaneous identification of a single pollution point source location and contamination time under known flow field conditions”,
Advances in Water Resources, 30(12): 2439-2446. doi:
10.1016/j.advwatres.2007.05.013.
[19]. Mazaheri, M.; Mohammad Vali Samani, J.; & Samani, H.M.V. (2015). “Mathematical Model for Pollution Source Identification in Rivers”,
Environmental Forensics, 16(4): 310-321. doi:
10.1080/15275922.2015.1059391.
[20]. Neupauer, R.M .; Borchers, B.; & Wilson J.L. (2000). “Comparison of inverse methods for reconstructing the release history of a groundwater contamination source”,
Water Resources Research, vol. 36, no. 9, pp. 2469-2475. doi:
10.1029/2000WR900176.
[21]. Neupauer, R.M.; & Wilson J.L. (2005). “Backward probability model using multiple observations of contamination to identify groundwater contamination sources at the Massachusetts Military Reservation”,
Water Resources Research, vol. 41, W02015.doi:
10.1029/2003WR002974.
[22]. Polyanin, A.D. (2001). Handbook of Linear Partial Differential Equations for Engineers and Scientists. Florida: Chapman & Hall/CRC.ISBN: 9781466581456.
[23]. Tikhonov, A.N.; & Arsenin, V.Y. (1977).
Solutions of Ill-Posed Problem, Washington, D.C: Winston & Sons. doi:
10.1137/1021044.
[24]. Wang, Z.; & Liu, J. (2008). Identification of the pollution source from one-dimensional parabolic equation models. Applied Mathamatics and Computation, In press. doi: 10.1016/j.amc.2008.03.014.
[25]. Wang, Z.; & Liu, J. (2012). “Identification of the pollution source from one-dimensional parabolic equation models”,
Applied Mathematics and Computation 219(8), 3403-3413. doi:
10.1016/j.amc.2008.03.014.
[26]. Zhang, T.; & Chen, Q. (2007). “Identification of contaminant sources in enclosed spacey by a single sensor”,
Indoor Air, 17(6), 439-449. doi:
10.1111/j.1600-0668.2007.00489.x.