تهیۀ نقشۀ خطرپذیری آلایندۀ PM2.5 شهر تهران با استفاده از الگوریتم میانگین وزنی مرتب‌شده

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 گروه سیستم اطلاعات مکانی، دانشکدۀ مهندسی نقشه‌برداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران، تهران

2 دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهران

10.22059/jhsci.2023.355953.767

چکیده

آلایندۀ PM2.5 یکی از معضلات مهم زیست‌محیطی است که در پی صنعتی شدن و افزایش جمعیت شهرها پدید می‌آید. اطلاعات دربارۀ وضعیت غلظت آلاینده‌ها از جمله PM2.5 تأثیر بسزایی در نحوۀ تصمیم‌گیری مدیران شهری به‌منظور ارتقای سطح سلامت شهرها دارد. در این پژوهش از روش میانگین وزنی مرتب‌شده برای تولید پهنه‌بندی آلایندۀ PM2.5 استفاده شد. به این منظور از لایه‌های اطلاعاتی هواشناسی شامل سرعت باد، دمای بیشینه، دمای کمینه، دمای میانگین، بارش 24 ساعته و رطوبت و همچنین لایه‌های شاخص نرمال‌شدۀ تفاوت پوشش گیاهی (NDVI) و تراکم جاده‌ای استفاده شد. برای محاسبۀ وزن‌های مربوط به ‌ترتیب مقادیر به‌منظور به‌کارگیری الگوریتم میانگین وزنی مرتب‌شده از الگوریتم گرادیان کاهشی استفاده شد. برای دستیابی به مقدار بهینۀ وزن‌ها پارامتر نرخ آموزشی مطلوب به‌دست آمد. همچنین لایه‌های اطلاعاتی براساس وزن‌های به‌دست‌آمده طبق رویکرد میانگین وزنی مرتب‌شده تلفیق شدند. در نهایت برای ارزیابی نتایج به‌دست‌آمده از شاخص RMSE استفاده شد. برآورد آلایندۀ PM2.5 برای فصل‌های تابستان و زمستان به‌ترتیب کمترین و بیشترین خطا را داشت و مقادیر خطا برای این دو فصل به‌ترتیب 129/0 و 190/0 بود. ایستگاه اقدسیه در همۀ فصل‌ها کمترین خطا و ایستگاه‌های گلبرگ، منطقۀ 11 و شهرری بیشترین خطا را داشتند.

کلیدواژه‌ها


  1. Arsalani, F., & Alijani, B. (2021). Identification of effective factors concentration of heavy metals in the dust existing in the air of Tehran metropolis. Environmental Management Hazards, 8(4), 321-335. (in Persian)
  2. Balram, D., Lian, K.-Y., & Sebastian, N. (2019). Air quality warning system based on a localized PM2. 5 soft sensor using a novel approach of Bayesian regularized neural network via forward feature selection. Ecotoxicology and environmental safety, 182, 109386.
  3. Birjandi, N., Ghobadi, M., & Ahmadi, M. (2019). Analysis and zoning of air pollution in urban landscape using different models of spatial analysis (Case study: Tehran). Advances in Environmental Technology, 5(3), 185-191.
  4. Chandra, K., Meijer, E., Andow, S., Arroyo-Fang, E., Dea, I., George, J., . . . Tempest, A. (2019). Gradient descent: The ultimate optimizer. arXiv preprint arXiv:1909.13371.
  5. Dehnavi eelagh, M., & Ali Abbaspour, R. (2023). Estimation of Missing Values in Time Series of Air Pollution Data in Tehran City. Journal of Environmental Studies, 48(4), 439-459. (in Persian)
  6. Faraji, M., & Nadi, S. (2020). Hazards caused by the concentration of pollutants PM_2.5 by using Regression Methods and Spatial-temporal Similarity in Order to Impute the Missing Values in their Time Series (Case Study of Tehran). Environmental Management Hazards, 7(3), 299-312. (in Persian)
  7. Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., & Wang, J. (2015). Artificial neural networks forecasting of PM2. 5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118-128.
  8. Gholizadeh, A., Neshat, A. A., Conti, G. O., Ghaffari, H. R., Aval, H. E., Almodarresi, S. A., . . . Mohammadi, A. (2019). PM2. 5 concentration modeling and mapping in the urban areas. Modeling Earth Systems and Environment, 5(3), 897-906.
  9. Hamed, H. H., Jumaah, H. J., Kalantar, B., Ueda, N., Saeidi, V., Mansor, S., & Khalaf, Z. A. (2021). Predicting PM2. 5 levels over the north of Iraq using regression analysis and geographical information system (GIS) techniques. Geomatics, Natural Hazards and Risk, 12(1), 1778-1796.
  10. Khorshiddoust, A.M., Mohammadi, G. H., Aghlmand, F., & Hosseini Sadr, A. (2018). Descriptive-statistical Analysis of the Relationship between Atmospheric Conditions and Urban Pollution in Tabriz. Environmental Management Hazards, 5(2), 217-230. (in Persian)
  11. Kong, L., & Tian, G. (2020). Assessment of the spatio-temporal pattern of PM2. 5 and its driving factors using a land use regression model in Beijing, China. Environmental monitoring and assessment, 192(2), 1-19.
  12. Li, R., Ma, T., Xu, Q., & Song, X. (2018). Using MAIAC AOD to verify the PM2. 5 spatial patterns of a land use regression model. Environmental Pollution, 243, 501-509.
  13. Lin, G., Fu, J., Jiang, D., Hu, W., Dong, D., Huang, Y., & Zhao, M. (2014). Spatio-temporal variation of PM2. 5 concentrations and their relationship with geographic and socioeconomic factors in China. International journal of environmental research and public health, 11(1), 173-186.
  14. Mahmoudi, S., & Ahmadi Nadoushan, M. (2022). Study the effects of Traffic Conditions on the PM2.5 emission Geographically Weighted Regression model (case study: Isfahan city). Journal of Environmental Science and Technology, 24(4), 31-45. doi:10.30495/jest.2022.61573.5428. (in Persian)
  15. Pope III, C. A. (2000). Epidemiological basis for particulate air pollution health standards. Aerosol Science & Technology, 32(1), 4-14.
  16. Pourmohammadi, S., Lotfi, A., & Alranaee, M. (2022). Investigating the Effects of Land Changes on some Pollutants in the Mahshahr Industrial Zone using Remote Sensing and Analysis of Variance (ANOVA) Images. Geography and Environmental Planning, 33(4), 79-96. doi:10.22108/gep.2022.133195.1510. (in Persian)
  17. Querol, X., Alastuey, A., Ruiz, C., Artiñano, B., Hansson, H., Harrison, R., . . . Bruckmann, P. (2004). Speciation and origin of PM10 and PM2. 5 in selected European cities. Atmospheric Environment, 38(38), 6547-6555.
  18. Razavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S.-M. (2022). Spatio-temporal modelling of asthma-prone areas using a machine learning optimized with metaheuristic algorithms. Geocarto International, 1-26.
  19. Shogrkhodaei, S. Z., Razavi-Termeh, S. V., & Fathnia, A. (2021). Spatio-temporal modeling of pm2. 5 risk mapping using three machine learning algorithms. Environmental Pollution, 289, 117859.
  20. Wu, J., Wang, Y., Liang, J., & Yao, F. (2021). Exploring common factors influencing PM2. 5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies. Environmental Pollution, 285, 117138.
  21. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190.
  22. Yousefian, F., Mahvi, A. H., Yunesian, M., Hassanvand, M. S., Kashani, H., & Amini, H. (2018). Long-term exposure to ambient air pollution and autism spectrum disorder in children: a case-control study in Tehran, Iran. Science of the total environment, 643, 1216-1222.
  23. Yu, W., Guo, Y., Shi, L., & Li, S. (2020). The association between long-term exposure to low-level PM2. 5 and mortality in the state of Queensland, Australia: a modelling study with the difference-in-differences approach. PLoS medicine, 17(6), e1003141.
  24. Zarandi, S. M., Shahsavani, A., Nasiri, R., & Pradhan, B. (2021). A hybrid model of environmental impact assessment of PM2. 5 concentration using multi-criteria decision-making (MCDM) and geographical information system (GIS)—a case study. Arabian Journal of Geosciences, 14(3), 1-20.
  25. Zhao, R., Zhan, L., Yao, M., & Yang, L. (2020). A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2. 5. Sustainable Cities and Society, 56, 102106.