ارزیابی تأثیر فرونشست بر روند لرزه‌خیزی دشت ورامین و دشت شهریار با استفاده از تصاویر ماهواره‌ای

نوع مقاله : پژوهشی بنیادی

نویسندگان

1 گروه ژئوفیزیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه زلزله‌شناسی مهندسی، پژوهشگاه بین‌المللی مهندسی زلزله و زلزله‌شناسی، مدیر مرکز پیش‌بینی زلزله پژوهشگاه بین‌المللی مهندسی زلزله و زلزله‌شناسی، گروه ژئوفیزیک، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه زمین‌شناسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

4 گروه ژئوفیزیک، مرکز تحقیقات زلزله‌شناسی، دانشگاه فردوسی، مشهد، ایران

10.22059/jhsci.2023.362753.788

چکیده

با توجه به موقعیت جغرافیایی و زمین‌شناسی خاص ایران، هرساله پدیدۀ زمین‌لرزه خسارات جانی و مالی زیادی را بر کشور تحمیل می‌کند. از جمله راهکارهای کاهش این خسارات، شناسایی مناطق مستعد وقوع زمین‌لرزه و معرفی راهکارهای مؤثر برای کاهش خسارات احتمالی است. پژوهش حاضر به بررسی تأثیر تغییرات نرخ فرونشست بر روند لرزه‌خیزی با استفاده از داده‌های ماهواره‌ای sentinel-1، در دامنۀ زمانی سال‌های 2021-2014 در دشت‌های تهران (دشت شهریار و دشت ورامین) پرداخته است. به این منظور از داده‌های 46 حلقه چاه پیزومتری منطقه از سال 2014 تا 2021 برای پهنه‌بندی و بررسی سطح آب زیرزمینی استفاده شد. افزون‌بر آن، پس از تصحیح کاتالوگ لرزه‌خیزی با فنون استاندارد و همچنین کاتالوگ خردلرزه‌خیزی در پژوهش حاضر و تعیین وضعیت لرزه‌خیزی منطقه، میزان فرونشست دشت‌های ورامین و شهریار به‌ترتیب با نرخ 65 و 5/54 سانتی‌متر در سال به دست آمد. مشاهده شد که تغییرات 600 هزار مترمکعب در سال حجم آبخوان محدودۀ پژوهش‌، به حداقل تغییرات تنش منطقه به میزان 5 بار تا 17 بار (معادل 500 تا 1700 کیلو پاسکال) منجر شده و الگوی لرزه‌خیزی منطقه نیز نشان‌دهندۀ روند افزایشی در رخداد زمین‌لرزه‌های بعدی از یک سو و کوتاه شدن دامنۀ زمانی دورۀ بازگشت لرزه‌ای در محدودۀ پژوهش‌ است. در نهایت مطابقت زیاد روند داده‌ها در نمودارهای توزیعی، بیانگر همخوانی روند فرونشست و در نتیجه، تأثیر آن بر روند لرزه‌خیزی منطقۀ پژوهش‌ است که تأثیر فرونشست را در روند لرزه‌خیزی در مناطق تحت بررسی نشان می‌دهد.

کلیدواژه‌ها


  • Abbasi, A. (2017). Evaluation of earthquake locations by the two local and regional seismic networks in Central Alborz (Iran), Journal of the Earth and Space Physics, 43(3), 4
  • M., Ebady. E., & Ghale. E. (2022). Investigation of subsidence of Mahidasht plain of Kermanshah province using radar interferometry method, Journal of Geography and Planning, 26(79), 207-220. (In Persian).
  • Amighpey, M., Vosooghi,, & Mothagh, M. (2016). Assessment Evaluation of source parameters of 2005 Qeshm earthquake based on inversion of INSAR observation using genetic algorithm, Tectonics Journal, 24(95), 343-350. (In Persian)
  • Amos,, Audet, P., Hammond, W., Burgmann, R., Johanson, I., & Blewitt, G., (2014). Uplift and seismicity driven by groundwater depletion in central California, Nature, vol 509.

 

  • Bragato, P. (2021). Systematic Triggering of Large Earthquakes by Karst Water Recharge: Statistical Evidence in Northeastern Italy, Frontiers in Earth science, 9, 664932.
  • Chen, Y., Sung, Q., & Cheng.,, (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis, Geomorphology,56(1),109-137.

 

  • Dura, T., Horton, B. P., Cisternas, M., Ely, L. L., Hong, I., Nelson, A. R., & Nikitina, D. (2017). Subduction zone slip variability during the last millennium, south-central Chile, Quaternary Science Reviews, 175, 112-137.‌
  • Fathi, M., & Noorian-Bidgoli, M. (2021). Evaluation of Land Subsidence Due to Water-Level Decline in Kashan Plain, Journal of Water and Wastewater Science and Engineering, 6(4), 45-57. (In Persian)
  • Ghohroudi, M., Pourmousavi, S.M., & S., (2018). Investigating the potential of seismic destruction by using multi-indicator models (case study: one area of Tehran city), Quantitative Geomorphological Research, 1(3), 57-67. (In Persian)
  • Ghorbani, Z., Khosravi, A., Mojtahedi, F. F., Javadnia, E., & Nazari, A. (2022). Use of InSAR Data for the Measurement of Land Subsidence in Response to Groundwater Fluctuations and Climate Change (Case Study: Ardabil Plain, Iran).‌
  • González1, P., Tiampo, K., Palano, M., , Cannavo, F., & Fernández, J., (2012). The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading, Nature Geo Science,
  • Hawkes, A. D., Horton, B. P., Nelson, A. R., Vane, C. H., & Sawai, Y. (2011). Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700. Quaternary Science Reviews, 30(3-4), 364-376.‌
  • Hill, D. (2012). Dynamic Stresses, Coulomb Failure, and Remote Triggering—Corrected, Bulletin of the Seismological Society of America, 102(6).
  • Jalini, M., Sepehr, A., Lashkari poor, G., & Rashki, A. (2018). Morphometric correlation of land subsidence related fissures and edaphic variability over Neyshabour Plain, Quantitative Geomorphological Research, 5(4), 59-75. (In Persian)
  • Japan International Cooperation Agency (2001) Final Report of Seismic Micro-zoning in Tehran, Center for Environmental Studies of Tehran. (In Persian)
  • King, G., Stein, R., & Lin, J, (1996). Static Stress Changes and the Triggering OF Earthquakes, Revised for Seismol. Soc. Am.
  • Koohbanani, H., Yazdani, M., & Hosseini, S. K. (2020) Spatiotemporal relation of RADAR-derived land subsidence with groundwater and seismicity in semnan-Iran, Journal of natural Hazards, 103(1), 785-798.
  • Krishnan, S., Kim, D., Jung, & (2018). Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal Revealed from Small Baseline Subset-DInSAR Analysis, GIScience & Remote Sensing, 55(4), 604-621.
  • Milker, Y., Horton, B. P., Vane, C. H., Engelhart, S. E., Nelson, A. R., Witter, R. C., ... & Bridgeland, W. T. (2015). Annual and seasonal distribution of intertidal foraminifera and stable carbon isotope geochemistry, Bandon Marsh, Oregon, USA, The Journal of Foraminiferal Research, 45(2), 146-155.‌
  • Mojtahedi, F. (2016) Investigation of Ardabil plain subsidence with respect to changes in groundwater level and climate fluctuation.
  • Mottaghi, A. (2017) Improving locations of earthquakes along the Central Alborz, Iran, using waveform cross-correlation-based time delays, Iranian Journal of Geophysics, 11(1), 9.
  • Padgett, J. S., Engelhart, S. E., Kelsey, H. M., Witter, R. C., Cahill, N., & Hemphill-Haley, E. (2021). Timing and amount of southern Cascadia earthquake subsidence over the past 1700 years at northern Humboldt Bay, California, USA. GSA Bulletin, 133(9-10), 2137-2156.‌
  • Wang, P. L., Engelhart, S. E., Wang, K., Hawkes, A. D., Horton, B. P., Nelson, A. R., & Witter, R. C. (2013). Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates, Journal of Geophysical Research: Solid Earth, 118(5), 2460-2473.‌
  • Wetzler, N., Shalev, E., Göbel, T., Amelung, F., Kurzon, I., Lyakhovsky,V., & Brodsk, E. (2019). Earthquake swarms triggered by groundwater extraction near the Dead Sea Fault, AGU 100, Geophysical Research Letters, 46, 8056–
  • Zareh, H., (2011). Seismic Risk Assessment Based on Segmentation of Active Faults in Semnan Province, Fifteenth Symposium of Geological Society of Iran,14-15 Dec 2001, Tarbiat Moalem University. (In Persian)