[1] آزادطلب، مهناز؛ شهابی، هیمن؛ شیرزادی، عطااله؛ و چپی، کامران (1399). پهنهبندی خطر سیلاب در شهر سنندج با استفاده از مدلهای ترکیبی شاخص آماری و تابع شواهد قطعی. مطالعات شهری، 36، 27-40.
[2] آزادی، فهیمه؛ صدوق، سید حسن؛ قهرودی، منیژه؛ و شهابی، هیمن (1399)، پهنهبندی حساسیت خطر سیل در حوضۀ آبخیز رودخانه کشکان با استفاده از دو مدل WOE و EBF، جغرافیا و مخاطرات محیطی، 33، 45-60.
[3] پیرستانی، محمدرضا؛ و شفقتی، مهدی (1388). بررسی اثرات زیستمحیطی احداث سد. جغرافیای انسانی، 1(3)، 39-50.
[4] حبیبی، محمدرضا؛ پاکباز، حمید؛ و صفایی کوچکسرایی، علیرضا (1397). بررسی پارامترهای اساسی در ساخت سازۀ آبگذر (پل) در مسیر رودخانه، مهندسی آب، 6(2)، 124-131.
[5] حجاریان، احمد (1402). مطالعه تطبیقی مدلسازی مناطق حساس به وقوع سیل (استان اصفهان). مدیریت مخاطرات محیطی، 10(3)، 199-214. https://doi.org/10.22059/jhsci.2023.362467.786
[6] رحیمپور، توحید؛ رضائیمقدم، محمدحسین؛ حجازی، سید اسدالله؛ و ولیزاده کامران، خلیل (1400). تحلیل تغییرات فضایی حساسیت خطر وقوع سیل بر پایه نوعی مدل ترکیبی نوین (مطالعۀ موردی: حوضۀ آبریز الندچای، شهرستان خوی). مدیریت مخاطرات محیطی، 8(4)، 371-393. https://doi.org/10.22059/jhsci.2022.335204.692
[7] رضائیمقدم، محمدحسین؛ حجازی، سیداسدالله؛ ولیزاده کامران، خلیل؛ و رحیمپور، توحید (1399). بررسی حساسیت سیلخیزی حوضههای آبریز با استفاده از شاخصهای هیدروژئومورفیک (مطالعۀ موردی: حوضۀ آبریز الندچای، شمال غرب ایران). پژوهشهای ژئومورفولوژی کمی، 9(2)، 195-214. 10.22034/gmpj.2020.118241
[8] معروفینیا، ادریس؛ نوحانی، ابراهیم؛ خسروی، خهبات؛ و چپی، کامران (1395). ارزیابی روش شاخص آماری در تهیۀ نقشۀ حساسیت به وقوع سیل. دانش آبوخاک، 26(2)، 201-214.
[9]. Ahmadlou, M., Karimi, M., Alizadeh, S., Shirzadi, A., Parvinnejhad, D., Shahabi, H., & Panahi, M. (2019). Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA).
Geocarto Int, 34 (11), 1252–1272.
https://doi.org/10.1080/10106049.2018.1474276.
[10]. Ajim Ali, Sk., Farhana Parvin, Bao Pham, Q., Vojtek, M., Vojteková, J., Costache, R., Thi Thuy Linh, N., Quan Nguyen, H., Ahmad, A., & Ghorbani, M.A. (2020). GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia
. Ecological Indicators, 117.
https://doi.org/10.1016/j.ecolind.2020.106620.
[11]. Aydin, H.E., Iban, M.C. (2023). Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations.
Nat Hazards, 116, 2957–2991.
https://doi.org/10.1007/s11069-022-05793-y.
[12]. Band, S.S., Janizadeh, S., Chandra Pal, S., Saha, A., Chakrabortty, R., Melesse, A.M., & Mosavi, A. (2020). Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms.
Remote Sensing, 12 (21).
https://doi.org/10.3390/rs12213568.
[13]. Bisht, S., Chaudhry, S., Sharma, S., & Soni, S. (2018). Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India.
Remote Sensing Applications: Society and Environment, 12, 35-47.
https://doi.org/10.1016/j.rsase.2018.09.001.
[14]. Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash Flood Hazard
Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine
Subsidence Areas.
Sustainability, 8(9), 948.
https://doi.org/10.3390/su8090948.
[16]. Costache, R. (2019). Flood susceptibility assessment by using bivariate statistics and machine learning models: a useful tool for flood risk management.
Water Resour Manage, 33(9), 3239– 256.
https://doi.org/10.1007/s11269-019-02301-z.
[17]. Dankers, R., Arnell, N.W., Clark, D.B., Falloon, P.D., Fekete, B.M., Gosling, S.N., Heinke, J., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., & Wisser, D. (2014). First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc. Natl. Acad. Sci, 111, 3257–3261.
[18]. Das, S. )2019(. Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India.
Remote Sensing Applications: Society and Environment, 14, 60-74. doi:
https://doi.org/10.1016/j.rsase.2019.02.006.
[19]. Fernandez, D., & Lutz, M. (2010). Urban flood hazard zoning in Tucum_an Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol, 111(1), 90–98.
[20]. Gittleman, M., Farmer, C.J., Kremer, P., & McPhearson, T. (2017). Estimating stormwater runoff for community gardens in New York City. Urban Ecosyst, 20 (1), 129–139.
[21]. Glenn, E., Morino, K., Nagler, P., Murray, R., Pearlstein, S., & Hultine, K. (2012). Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river. J. Arid Environ, 79, 56–65.
[22]. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nat. Clim. Chang, 3, 816.
[23]. Kiss, R. (2004). Determination of drainage network in digital elevation model, utilities and limitations. J. Hung.vGeo-Math, 2, 16–29.
[24]. Kourgialas, N.N., & Karatzas, G.P. (2011). Flood management and a GIS modelling method to assess flood- hazard areas—a case study.
Hydrological Sciences Journal, 56(2), 212–225. doi:
https://doi.org/10.1080/02626667.2011.555836.
[25]. Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island. Malaysia.
Journal of Earth System Science, 115(6), 661–672.
https://doi.org/10.1007/s12040-006-0004-0.
[26]. Lee, S., Kim, J. C., J, H. S., Lee, M.J., & Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Nat. Hazards Risk, 8, 1185–1203.
[27]. Majeed, M., Lu, L., Anwar, M.M., Tariq, A., Qin, S., El-Hefnawy, ME., El-Sharnouby, M., Li, Q., & Alasmari, A. (2023). Prediction of flash flood susceptibility using integrating analytic hierarchy process (AHP) and frequency ratio (FR) algorithms. Front. Environ. Sci, 10, 1-14. doi: 10.3389/fenvs.2022.1037547.
[28]. Moore, I.D., Grayson, R.B., & Ladson, A.R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process, 5, 3–30.
[29]. Msabi, M.M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania.
Remote Sensing Applications: Society and Environment, 21,
https://doi.org/10.1016/j.rsase.2020.100445.
[30]. Norman, L., Huth, H., Levick, L., Shea Burns, I., Phillip Guertin, D., Lara‐Valencia, F., & Semmens, D. (2010). Flood hazard awareness and hydrologic modelling at Ambos Nogales, United States–Mexico border. Journal of Flood Risk Management, 3(2), 151-165.
[31]. Oztekin, B., & Topal, T. (2005). GIS-based detachment susceptibility analyses of a cut slope in Limestone, Ankara-Turkey. Environ. Geol, 49, 124–132.
[32]. Papaioannou, G., Vasiliades, L., & Loukas, A. (2015). Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour. Manag, 29, 399–418.
[33]. Paul, G.C., Saha, S., & Hembram, T.K. (2019). Application of the GIS-Based Probabilistic Models for Mapping the Flood Susceptibility in Bansloi Sub-basin of Ganga-Bhagirathi River and Their Comparison.
Remote Sensing in Earth Systems Sciences, 2, 120–146.
https://doi.org/10.1007/s41976-019-00018-6.
[34]. Powell, S.J., Jakeman, A., & Croke, B. (2014). Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands?
Ecological Indicators, 45, 486–493.
https://doi.org/10.1016/j.ecolind.2014.05.009.
[35]. Rahmati, O., Pourghasemi, H.R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran.
Geocarto International, 31, 42–70.
https://doi.org/10.1080/10106049.2015.1041559.
[36]. Saha, S., Arabameri, A., Saha, A., Blaschke, T., Ngo, P.T.T., Nhu, V.H., & Band, S.S. (2021). Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method. Science of the total environment, 764, https://doi.org/10.1016/j.scitotenv.2020.142928.
[37]. Saikh, N.I., & Mondal, P. (2023). GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India.
Natural Hazards Research,
https://doi.org/10.1016/j.nhres.2023.05.004.
[38]. Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., & Rahmati, O. (2017). Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto International, 1–15.
[39]. Sofia, G., Roder, G., Dalla Fontana, G., & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction.
Scientific Reports, 7, 40527.
https://doi.org/10.1038/srep40527.
[40]. Sujatha, E.R., Selvakumar, R., Rajasimman, U.A.B., & Victor, R. (2015). Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM.
Geomatics, Natural Hazards and Risk, 6(4), 326-341.
https://doi.org/10.1080/19475705.2013.845114.
[41]. Wang, Y., Fang, Z., Hong, H., Costache, R., & Tang, X. (2021). Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree.
Journal of Environmental Management, 289, doi:
https://doi.org/10.1016/j.jenvman.2021.112449.
[42]. Wu, Y.L., Li, W.P., Wang, Q.Q., Liu, Q.Q., Yang, D.D., Xing, M.L., Pei, Y.B., & Yan, S.S. (2016). Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China.
Arabian Journal of Geosciences, 9, 84.
https://doi.org/10.1007/s12517-015-2112-0.
[43]. Yariyan, P., Avand, M., Abbaspour, R.A., Torabi Haghighi, A., Costache, R., Ghorbanzadeh, O., Janizadeh, S., & Blaschke, T. (2020). Flood susceptibility mapping using an improved analytic network process with statistical models.
Geomatics, Natural Hazards and Risk, 11(1), 2282–2314.
https://doi.org/10.1080/19475705.2020.1836036.
[44]. Zwenzner, H., & Voigt, S. (2009). Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data.
Hydrology and Earth System Sciences, 13:67–576.
https://doi.org/10.5194/hess-13-567-2009.