[2]. Schoen, R. (1982). "The Fibonacci Sequence in Successive Partitions of a Golden Triangle." Fib. Quart. 20, 159-163, 1982.
[3]. Pappas, T. (1989). "The Golden Rectangle."
The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 102-106.
[4]. Kagan, Y.Y. (2002). “Aftershock Zone Scaling”, Bull. of American Seismological Society, Volume 92, 641-655
[5]. Turcotte, D.D. (1997). Fractals and Chaos in Geology and Geophysics, New York, Cambridge University, Cambridge University Press, p397, 2nd Edition.
[7]. Werner, M.J. (2011). “Earthquake Forecasting based on Data Assimilation: Sequential Monte Carlo Methods”, Nonlinear Process in Geophysics, 18, 49-79.
[8]. Kabai, S. (2002). “Mathematical Graphics I: Lessons in Computer Graphics Using Mathematica”. Püspökladány, Hungary: Uniconstant, p. 79.
[9]. Berberian, M. (2014). “Earthquakes and Coseismic Surface Faulting on the Iranian Plateau”, Elsevier, 978-0-444-63297-5, Volume 17 - 1st Edition.
[10]. Ambraseys, N.N., and Melville, C.P. (1982). A History of Persian Earthquakes, New York, Cambridge University, Cambridge University Press, p150, 1st Edition.
[12]. Viswanath D. (2000). “Mathematics of Computation, Random Fibonacci Sequences and the Number” 1.131988, American Mathematical Society, Volume 69, No 231, 1131-1155.
[13]. Sgrina V., Conti L., (2012). ‘A Deterministic Approach to Earthquake prediction” International Journal of Geophysics Vol. 2012, Article ID 406278, 1-20.
[14]. Boucouvalas A C., Gkasios M, Keskebes A, Tselikas NT, (2014). “Leading Time Domain Seismic Precursors” 2ndIntern. Conf. on Remote Sensing and Geoinformation of the Environment (RSCy2014) Proc SPIE Vol.9229, 92291H, Paphos, Cyprus.
[15]. Mandelbrot B.B., (2003). “The Fractal Geometry of Nature” W.H. Freeman and Company Press, YALE University, New York, USA, 466P.