شناسایی سریع مناطق آسیب‌دیده پس از وقوع زلزله با استفاده از تصاویر ماهواره‌ای Sentinel-2 (مطالعۀ موردی: زلزلۀ سرپل ذهاب)

نوع مقاله : پژوهشی کاربردی

نویسندگان

1 استادیار، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

2 کارشناس ارشد ژئودزی، دانشگاه آزاد شاهرود، سمنان، شاهرود

3 دانشجوی دکتری سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

4 کارشناس ارشد فتوگرامتری، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

شناسایی سریع مناطق آسیب‌دیده پس از وقوع زلزله به‌منظور تولید نقشۀ آسیب، اهمیت زیادی در زمینۀ امداد و نجات دارد. در چند سال گذشته استفاده از تصاویر ماهواره‌ای برای تولید نقشۀ تخریب به‌دلیل سرعت زیاد، پوشش وسیع از منطقه و هزینۀ اندک بسیار مورد توجه محققان قرار گرفته است. در این پژوهش، یک روش شناسایی سریع مناطق آسیب‌دیده مبتنی بر روش‌های شناسایی تغییرات ارائه خواهد شد که دربارۀ زلزلۀ سال 1396 سرپل ذهاب اجرا می‌شود. به‌منظور اعتبارسنجی این روش، ابتدا نتایج روش شناسایی تغییرات ارزیابی شد که خروجی‌ها نشان‌دهندۀ صحت زیاد روش در شناسایی مناطق تغییریافته‌اند. از طرف دیگر، نتایج روش شناسایی آسیب که در زلزلۀ سرپل ذهاب اجرا شده با نقشه‌های آسیب تولیدشده توسط سازمان فضایی اروپا اعتبارسنجی شد که نتایج حاکی از صحت 84 درصدی در شناسایی مناطق آسیب‌دیده است. با به‌کارگیری روش پیشنهادی، نقشۀ آسیب برای شهر سرپل ذهاب بسیار سریع و در مدت کمتر از سی دقیقه تولید شد.

کلیدواژه‌ها


[1] Bezdek, James C; Ehrlich, Robert; & Full, William. )1984(. “FCM: The fuzzy c-means clustering algorithm”, Computers & Geosciences, 10 (2-3), pp:191-203.
[2] Eguchi, Ronald T; Huyck, Charles K; Ghosh, Shubharoop; & Adams, Beverley J. (2008). “The Application of Remote Sensing Technologies for Disaster Management”, Paper presented at the The 14th World Conference on Earthquake Engineering.
[3] Estrada, Miguel; Masayuki, Kohiyama; Matsuoka, Masashi; & Yamazaki, Fumio (2001), “Detection of Damage Due to the 2001 El Salvador Earthquake Using Landsat Images”, Paper presented at the Proceedings of the 22nd Asian Conference on Remote Sensing,.
[4] Gharechelou, Saeid; & Tateishi, Ryutaro (2017). “Rapid Monitoring of Earthquane Damages Using Optical and Sar Data”, World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering11, no. 9 (2017), pp: 873-879.
[5] Goshtasby, A Ardeshir (2005). 2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications, John Wiley & Sons,.
[6] Janalipour, Milad; Mohammadzadeh Ali; Mohammad Khanlu, H.; Khesali, E.; & Enayati, H. (2019). “Sensitivity Analysis on Parameters of Three Conventional and one new Remote Sensing Radiometric Correction Methods in order to Produce Accurate Change Ma”, Journal of Geomatics Science and Technology, 8 (3), pp:33-43.
[7] Janalipour, Milad; & Mohammadzadeh, Ali (2015). “Building damage detection using object-based image analysis and ANFIS from high-resolution image (Case study: BAM earthquake, Iran)”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (5), pp:1937-1945.
[8] Janalipour, Milad; & Mohammadzadeh, Ali  (2018). “Evaluation of Effectiveness of Three Fuzzy Systems and Three Texture Extraction Methods for Building Damage Detection from Post-Event Lidar Data”, International journal of digital earth11, no. 12, pp: 1241-1268.
[9] Janalipour, Milad; & Mohammadzadeh, Ali (2019). “A Novel and Automatic Framework for Producing Building Damage Map Using Post-Event Lidar Data”, International Journal of Disaster Risk Reduction, 101238.
 [10] Janalipour, Milad; Mohammadzadeh, Ali; Valadan Zoeg, Mohammad Javad; & Amirkhani, Said (2015). “Buildings Damage Determination After The Earthquake By Using Anfis Model and Remote Sensing Imagery”.
[11] Khanbani, Sara; Mohammadzadeh, Ali; & Janalipour Milad (2018). “Global and Local Change Detection Using K-Means Clustering Improved by Particle Swarm Optimization”, Journal of Geomatics Science and Technology 7, no. 3, pp: 75-88.
[12] Kohiyama, Masayuki; & Yamazaki, Fumio (2005). “Damage Detection for 2003 Bam, Iran, Earthquake Using Terra-Aster Satellite Imagery”, Earthquake Spectra21, no. S1, pp: 267-274.
[13] Li, Qiaoliang, Guoyou Wang; Liu, Jianguo; & Chen, Shaobo (2009). “Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration”, IEEE Geoscience and Remote Sensing Letters 6, no. 2, pp: 287-291.
 [14] Pickup, Geoff, & Foran, Barney (1987).  “The Use of Spectral and Spatial Variability to Monitor Cover Change on Inert Landscapes”, Remote Sensing of Environment 23, no. 2, pp: 351-363.
[15] Plank, Simon (2014). “Rapid Damage Assessment by Means of Multi-Temporal Sar—a Comprehensive Review and Outlook to Sentinel-1”, Remote Sensing 6, no. 6, pp: 4870-4906.
[16] Richards, John A.; & Xiuping, Jia (2006). Remote Sensing Digital Image Analysis-Hardback, Springer, Berlin/Heidelberg.
[17] Ruiz, LA; Fdez-Sarría, A.; & Recio Jorge. (2004). “Texture Feature Extraction for Classification of Remote Sensing Data Using Wavelet Decomposition: A Comparative Study”, Paper presented at the 20th ISPRS Congress.
[18] Seyedain, SA.; Valadan Zoej Mohammad Javad, Maghsoudi, Y. & Janalipour, Milad (2015). “Improving the Classification Accuracy Using Combination of Target Detection Algorithms in Hyperspectral Images”, Journal of Geomatics Science and Technology 4, no. 4, pp: 161-74.
[19] Sharma, Mona; & Singh, Sameer (2001). “Evaluation of Texture Methods for Image Analysis”, Paper presented at the Intelligent Information Systems Conference, The Seventh Australian and New Zealand 2001.
[20] Šimić Milas; Prabha Rupasinghe, Anita; Balenović, Ivan; & Grosevski, Pece. (2015). “Assessment of Forest Damage in Croatia Using Landsat-8 Oli Images”,  SEEFOR (South-east European forestry) 6, no. 2, pp: 159-169.
[21] Singh, Ashbindu. "Review Article Digital Change Detection Techniques Using Remotely-Sensed Data." International journal of remote sensing 10, no. 6 (1989): 989-1003.
[22] Tiede, Dirk, Lang, Stefan; Füreder, Petra; Hölbling, Daniel; Hoffmann, Christian; & Zeil, Peter (2011). “Automated Damage Indication for Rapid Geospatial Reporting”, Photogrammetric Engineering & Remote Sensing 77, no. 9 (2011), pp: 933-942.
[23] Torrione, Peter A;  Morton, Kenneth D.; Sakaguchi, Ryan; & Collins, Leslie M. (2014). “Histograms of Oriented Gradients for Landmine Detection in Ground-Penetrating Radar Data”, IEEE Transactions on Geoscience and Remote Sensing 52, no. 3, pp: 1539-1550.
[24] Triantaphyllou, Evangelos (2000). “Multi-Criteria Decision Making Methods”, In Multi-Criteria Decision Making Methods: A Comparative Study. Springer, pp: 5-21.
[25] Varesi, Atefeh; Mohammadzadeh, Ali; & Janalipour Milad (2017). Presentation of a Method for Detecting Urban Growth Using Spectral-Spatial Variation Indicators and Remote Sensing Data.
[26] Witmer, Frank DW (2008). “Detecting War‐Induced Abandoned Agricultural Land in Northeast Bosnia Using Multispectral, Multitemporal Landsat Tm Imagery”, International Journal of Remote Sensing 29, no. 13, pp: 3805-3831.
[27] Yang, Chenghai; Everitt, James H.; & Bradford, Joe M.. (2008). “Yield Estimation from Hyperspectral Imagery Using Spectral Angle Mapper (Sam)”, Transactions of the ASABE 51, no. 2, pp: 729-737.
[28] Yang, Xiajun; & Lo, CP (2000). “Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images”, Photogrammetric Engineering and Remote Sensing 66, no. 8, pp: 967-980.
[29] Yusuf, Yalkun; Matsuoka, Masashi; & Yamazaki, Fumio (2001). “Damage Detection from Landsat-7 Satellite Images for the 2001 Gujarat, India Earthquake”, Paper presented at the Proceedings of the 22nd Asian Conference on Remote Sensing.