[1]. حلبیان، امیرحسین؛ و عسگری، شمسالله (1396). «پهنهبندی شدت سیلخیزی در حوضۀ آبریز میشخاص به کمک تحلیل عاملی- خوشهای»، هیدروژئومورفولوژی، دورۀ 3، شمارۀ 12، ص 177-153.
[2]. خسروشاهی، محمد؛ و ثقفیان، بهرام (1384). «تعیین حساسیت اثر برخی از عوامل مؤثر بر سیلخیزی زیرحوضههای آبریز با استفاده از تحلیل هیدروگراف خروجی حوضه و کاربرد مدل HEC-HMS»، جنگل و مرتع، دورۀ 7، شمارۀ 67، ص 37-28.
[3]. دارابی، حمید؛ شاهدی، کاکا؛ و مردیان، مهدی (1395). «تهیۀ نقشههای خطر احتمال و حساسیت سیل با استفاده از روش نسبت فراوانی در حوزۀ آبریز پل دوآب شازند»، مهندسی و مدیریت آبریز، دورۀ 8، شمارۀ 1، ص 79-68.
[4]. رضایی مقدم، محمدحسین؛ یاسی، مهدی؛ نیکجو، محمدرضا؛ و رحیمی، مسعود (1397). «پهنهبندی و تحلیل مورفولوژیکی سیلابهای رودخانۀ قرهسو با استفاده از مدل هیدرودینامیکی HEC-RAS (از روستای پیرازمیان تا تلاقی رودخانۀ اهر چای)»، جغرافیا و مخاطرات محیطی، دورۀ 7، شمارۀ 25، ص 15-1.
[5]. رضایی مقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل؛ و رحیمپور، توحید (1399). «تحلیل خصوصیات هیدروژئومورفیک حوضۀ آبریز الندچای بهمنظور اولویتبندی زیرحوضهها از نظر حساسیت سیلخیزی»، جغرافیا و مخاطرات محیطی، شمارۀ 33، ص 83-61.
[6]. رضائی مقدم، محمدحسین؛ حجازی، سید اسدالله؛ ولیزاده کامران، خلیل؛ و رحیمپور، توحید (1399). «بررسی حساسیت سیلخیزی حوضههای آبریز با استفاده از شاخصهای هیدروژئومورفیک (مطالعۀ موردی: حوضۀ آبریز الندچای، شمال غرب ایران)»، پژوهشهای ژئومورفولوژی کمی، دورۀ 9، شمارۀ 2، ص 214-195.
[7]. قضاوی، رضا؛ بابایی حصار، سحر؛ و عرفانیان، مهدی (1398). «اولویتبندی زیرحوزههای شهری مستعد سیلاب با استفاده از تکنیک PCA بهعنوان یک روش جدید وزندهی»، مخاطرات محیط طبیعی، دورۀ 8، شمارۀ 20، ص 100-83.
[8]. میرموسوی، سیدحسین؛ و اسمعیلی، حسین (1400). «پهنهبندی نواحی سیلخیز با استفاده از سامانه اطلاعات جغرافیایی (GIS) و سنجش از دور (RS)، مطالعۀ موردی: شهرستان داراب»، مخاطرات محیط طبیعی، دورۀ 10، شمارۀ 27، ص 46-21.
[9]. مختاری، داود؛ رضائی مقدم، محمدحسین؛ رحیمپور، توحید؛ و معزز، سمیه (1399). «تهیۀ نقشۀ خطر وقوع سیلاب در حوضۀ آبریز گمنابچای با استفاده از مدل ANP و تکنیک GIS»، اکوهیدرولوژی، دورۀ 7، شمارۀ 2، ص 509-497.
[10]. Ahmadisharaf, E.; Tajrishy, M.; & Alamdari, N. (2016). “Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making”,
Journal of Environmental Planning and Management, 59(8): 1397–1417.
https://doi.org/10.1080/09640568.2015.1077104.
[11]. Alexander, M.; Viavattene, C.; Faulkner, H.; & Priest, S. (2011). “A GIS-based Flood Risk Assessment Tool: Supporting Flood Incident Management at the Local Scale”, Flood risk management research consortium. Middlesex University.
[12]. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; Roo, A.; Salamon, P.; Wyser, K.; & Feyen, L. (2017). “Global projections of river flood risk in a warmer world”,
Earths Future, 5(2): 171-182.
https://doi.org/10.1002/2016EF000485.
[13]. Barker, D.M.; Lawler, D.M.; Knight, D.W.; Morris, D.G.; Davies, H.N.; & Stewart, E.J. (2009). “Longitudinal distributions of river flood power: the combined automated flood, elevation and stream power (CAFES) methodology”, Earth Surf. Process Landf. 34, 280–290.
[14]. Beckers, A.; Dew'als, B.; Erpicum, S.; Dujardin, S.; Detrembleur, S.; & Teller, J. (2013). “Contribution of land use changes to future flood damage along the river Meuse in the Walloon region”, Nat. Hazards Earth Syst. Sci. 13, 2301–2318.
[15]. Bisht, S.; Chaudhry, S.; Sharma, S.; & Soni, S. (2018). “Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India”,
Remote Sensing Applications: Society and Environment, 12, 35-47.
https://doi.org/10.1016/j.rsase.2018.09.001.
[16]. Borga, M.; Gaume, E.; Creutin, J.D.; & Marchi, L. (2008). “Surveying flash floods: gauging the ungauged extremes”,
Hydrological Processes. 22(18): 3883–3885.
https://doi.org/10.1002/hyp.7111.
[17]. Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; & Niu, C. (2016). “Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas”, Sustainability, 8(9): 948. https://doi.org/10.3390/su8090948.
[18]. Cevik, E.; & Topal, T. (2003). “GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey)”, Environ. Geol. 44 (8), 949–962.
[20]. Cohen, W.W. (1995). “Fast effective rule induction”, In: Prieditis, A.; Russell, S. (Eds.), Proceedings of the 12th International Conference on Machine Learning, 115–123. Morgan Kaufmann.
http://citeseer.ist.psu.edu/cohen95fast.html.
[21]. Costache, R.; Hong, H.; & Bao Pham, Q. (2020). “Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models”,
Science of The Total Environment, 711, 134514.
https://doi.org/10.1016/j.scitotenv.2019.134514.
[22]. Das, S. (2018). “Geomorphic characteristics of a bedrock river inferred from drainage quantification, longitudinal profile, knickzone identification and concavity analysis: a DEM-based study”.
Arab J. Geosci. 11 (21), 680.
https://doi.org/10.1007/s12517- 018-4039-8.
[23]. Das, S. (2019). “Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India”,
Remote Sensing Applications: Society and Environment, 14, 60-74.
https://doi.org/10.1016/j.rsase.2019.02.006.
[24]. Doocy, S.; Daniels, A.; Packer, C.; Dick, A.; & Kirsch, T.D. (2013). “The human impact of earthquakes: a historical review of events 1980– 2009 and systematic literature review”. PLoS Curr. 5.
[25]. Ercanoglu, M.; & Gokceoglu, C. (2002). “Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach”. Environ. Geol. 41, 720–730.
[26]. Fernandez, D.S.; & Lutz, M.A. (2010). “Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis”, Eng. Geol. 111, 90–98.
[27]. Freund, Y.; & Schapire, R. (1997). “A decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer and System Sciences, 55(1): 119-139. https://doi.org/10.1006/jcss.1997.1504.
[28]. García-Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana-Renault, N.; Serrano-Muela, P.; & NadalRomero, E. (2008). “Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees”, J. Hydrol. 356, 245–260.
[29]. Gittleman, M.; Farmer, C.J.; Kremer, P.; & McPhearson, T. (2017). “Estimating stormwater runoff for community gardens in New York City”, Urban Ecosyst. 20 (1), 129–139.
[30]. Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; & Can, T. (2005). “The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity”, Eng. Geol. 81, 65–83.
[31]. Hair, J.F.; Black, W.C.; Babin, B.J.; & Anderson, R.E. (2009). “Multivariate data analysis”, Prentice Hall, New York.
[32]. Han, J.; Kamber, M.; & Jian, P. (2011). “Data mining: concepts and techniques”, Morgan Kaufmann, Elsevier.
[33]. Haupt, L.R.; & Haupt, S.E. (2004), Practical Genetic Algorithms. 2nd edition. John Wiley & Sons, Inc.
[34]. Holland, J.H. (1975). “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor.
[35]. Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.; Chen, W.; Kougias, I.; & Kazakis, N. (2018). “Flood susceptibility assessment in Hengfeng area coupling adaptive neurofuzzy inference system with genetic algorithm and differential evolution”, Sci. Total Environ. 621, 1124–1141.
[36]. Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.; & Chen, W. (2018). “Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China”, Science of the Total Environment, 625, 575–588. https://doi.org/10.1016/j.scitotenv.2017.12.256.
[38]. Kavzoglu, T.; Sahin, E.K.; & Colkesen, I. (2015). “Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm”, Engineering Geology, 192, 101–112. https://doi.org/10.1016/j.enggeo.2015.04.004.
[39]. Khosravi, K.; Nohani, E.; Maroufinia, E.; & Pourghasemi, H.R. (2016). “A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique”, Nat. Hazards, 83 (2), 947–987.
[40]. Kourgialas, N.N.; Karatzas, & G.P. (2011). “Flood management and a GIS modelling method to assess flood-hazard areas—a case study”, Hydrological Sciences Journal, 56(2): 212–225. https://doi.org/10.1080/02626667.2011.555836.
[41]. Kumar Rai, P.; Narayan Mishra, V.; & Mohan, K. (2017). “A study of morphometric evaluation of the Son basin, India using geospatial approach”, Remote Sensing Applications: Society and Environment, 7: 9-20. http://dx.doi.org/10.1016/j.rsase.2017.05.001.
[42]. Kwak, Y.; & Kondoh, A. (2008). “A Study on the Extraction of Multi-Factor Influencing Floods from Remote Sensing Images and GIS Data: A Case Study in Nackdong Basin, South Korea. Centre for Remote Sensing, Chiba”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008.
[43]. Li, K.; Wu, S.; Dai, E.; & Xu, Z. (2012). “Flood loss analysis and quantitative risk assessment in China”, Nat. Hazards, 63, 737–760.
[44]. Mahmoud, S.H.; & Gan, T.Y. (2018). “Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East”, J. Clean. Prod. 196, 216–229.
[45]. Menard, S. (2001). “Applied Logistic Regression Analysis”, 2nd ed. Sage Publication, Thousand Oaks, CA, USA.
[46]. Miller, J.R.; Ritter, D.F.; Kochel, & R.C. (1990). “Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford upland, south-central Indiana. Am”, J. Sci. 290, 569–599
[47]. Mitchell, M. (1996). “An Introduction to Genetic Algorithms”, MIT Press, Cambridge, MA 9780585030944.
[48]. Ogden, F.L.; Raj Pradhan, N.; Downer, C.W.; & Zahner, J.A. (2011). “Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment”, Water Resour. Res. 47 (12).
[49]. Pant, N.; Kumar Dubey, R.; Bhatt, A.; Prakash Rai, S.; Semwal, P.; & Mishra, S. (2020). “Soil erosion and food hazard zonation using morphometric and morphotectonic parameters in Upper Alaknanda river basin”,
Natural Hazards, 103, 3263–3301.
https://doi.org/10.1007/s11069-020-04129-y.
[50]. Pham, B.T.; Tien Bui, D.; Prakash, I.; Nguyen, L.H.; & Dholakia, M.B. (2017). “A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS”, Environ. Earth Sci. 76, 371.
[51]. Pradhan, B. (2009). “Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing”, J. Spat. Hydrol. 9, 1–18.
[52]. Rahmati, O.; Pourghasemi, H.R.; & Zeinivand, H. (2016). “Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran”, Geocarto Int. 31 (1), 42–70.
[53]. Shit, P. K.; Bhunia, G. S.; & Pourghasemi, H. R. (2020). “Gully Erosion Susceptibility Mapping Based on Bayesian Weight of Evidence”, In Gully Erosion Studies from India and Surrounding Regions (pp. 133-146). Springer, Cham.
[54]. Siahkamari, S.; Haghizadeh, A.; Zeinivand, H.; Tahmasebipour, N.; & Rhamti, O. (2018). “Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models”, Geocarto International. 33 (9), 927–941.
[55]. Tehrany, M.S.; Pradhan, B.; & Jebur, M.N. (2013). “Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS”, J. Hydrol. 504, 69–79.
[56]. Tehrany, M.S.; Pradhan, B.; Mansor, S.; & Ahmad, N. (2015). “Flood susceptibility assessment using GIS-based support vector machine model with different kernel types”, Catena. 125, 91–101.
[57]. Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; & Keesstra, S. (2018). “Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms”, Sci. Total Environ, 615, 438–451.
[58]. Tien Bui, D.; Tsangaratos, P.; Thi Ngo, P. T.; Dat Pham, T.; & Thai Pham, B. (2019). “Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods”,
Science of the Total Environment. 668, 1038–1054.
https://doi.org/10.1016/j.scitotenv.2019.02.422.
[59]. Towfiqul Islam, A.B.; Talukdar, S.; Mahato, S.; Kundu, S.; UddinEibek, K.; BaoPham, Q.; Kuriqi, A.; & ThuyLinh, N.T. (2021). “Flood susceptibility modelling using advanced ensemble machine learning models”, Geoscience Frontiers. 12(3): 101075. https://doi.org/10.1016/j.gsf.2020.09.006.
[60]. Trawinski, K.; Cordon, O.; & Quirin, A. (2011). “On designing fuzzy rule-based multiclassification systems by combining furia with bagging and feature selection”, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 19(4): 589–633. https://doi.org/10.1142/S0218488511007155.
[61]. USDA, S.C.S. (1986). “Urban hydrology for small watersheds”, Technical Release. 55, pp. 2–6.
[62]. Yesilnacar, E, & Topla, T. (2005). “Landslide Susceptibility Mapping a Comparison of Logistic Regression and Neural Networks Methods in A Medium Scale (Turkey)”, Engineering Geology. Vol. 79, Pp 251–266.